Tissue morphogenesis

  • 文章类型: Journal Article
    共同迁移的非洲爪狼中内胚层细胞排列成具有不同粘附特性和突出行为的前导行和跟随行。在体内,前导行中内胚层细胞延伸极化突起,并沿着由胚层屋顶细胞组装的纤连蛋白基质迁移。在前导行处产生的牵引应力导致所附接的跟随器行单元向前拉动。从胚胎中取出的中内胚层外植体为表征集体细胞运动和行为提供了一个可实验处理的系统。然而,负责这种迁移模式的细胞机制仍然难以捉摸。我们在Cellular-Potts计算框架中引入了一种新型的基于代理的迁移中内胚层计算模型,以研究特定于前导和跟随行细胞行为的多个参数的各自贡献。敏感性分析可识别一致性,组织几何形状,和细胞嵌入是影响集体迁移细胞迁移速度的关键参数。该模型预测,粘附性和组织几何形状相结合可促进前导细胞的协同迁移,从而导致集合的迁移速度增加。细胞向基质的径向嵌入是有助于增加组织迁移速度的附加机制。使用中内胚层组织外植体通过实验验证模型结果。
    Collectively migrating Xenopus mesendoderm cells are arranged into leader and follower rows with distinct adhesive properties and protrusive behaviors. In vivo, leading row mesendoderm cells extend polarized protrusions and migrate along a fibronectin matrix assembled by blastocoel roof cells. Traction stresses generated at the leading row result in the pulling forward of attached follower row cells. Mesendoderm explants removed from embryos provide an experimentally tractable system for characterizing collective cell movements and behaviors, yet the cellular mechanisms responsible for this mode of migration remain elusive. We introduce a novel agent-based computational model of migrating mesendoderm in the Cellular-Potts computational framework to investigate the respective contributions of multiple parameters specific to the behaviors of leader and follower row cells. Sensitivity analyses identify cohesotaxis, tissue geometry, and cell intercalation as key parameters affecting the migration velocity of collectively migrating cells. The model predicts that cohesotaxis and tissue geometry in combination promote cooperative migration of leader cells resulting in increased migration velocity of the collective. Radial intercalation of cells towards the substrate is an additional mechanism contributing to an increase in migratory speed of the tissue. Model outcomes are validated experimentally using mesendoderm tissue explants.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    肌动蛋白结合蛋白的Shroom(Shrm)家族具有独特且高度保守的Apx/Shrm结构域2(ASD2)基序。shroom蛋白指导Rho相关激酶(ROCK)的亚细胞定位,通过磷酸化和激活非肌肉肌球蛋白II的能力重塑肌动球蛋白细胞骨架并改变细胞形态。因此,Shrm-ROCK复合体对细胞形状和许多组织的发育至关重要,包括神经管,眼睛,肠子,心,和脉管系统。重要的是,Shrm蛋白的结构和表达也与神经管缺陷有关,慢性肾病,癌转移,和X-link智力迟钝.因此,更好地了解Shrm介导的信号转导通路对于开发新的治疗策略以最大程度地减少导致异常Shrm蛋白的损伤至关重要.本文对各种Shrm蛋白及其在形态发生和疾病中的作用进行了全面综述。
    The Shroom (Shrm) family of actin-binding proteins has a unique and highly conserved Apx/Shrm Domain 2 (ASD2) motif. Shroom protein directs the subcellular localization of Rho-associated kinase (ROCK), which remodels the actomyosin cytoskeleton and changes cellular morphology via its ability to phosphorylate and activate non-muscle myosin II. Therefore, the Shrm-ROCK complex is critical for the cellular shape and the development of many tissues, including the neural tube, eye, intestines, heart, and vasculature system. Importantly, the structure and expression of Shrm proteins are also associated with neural tube defects, chronic kidney disease, metastasis of carcinoma, and X-link mental retardation. Therefore, a better understanding of Shrm-mediated signaling transduction pathways is essential for the development of new therapeutic strategies to minimize damage resulting in abnormal Shrm proteins. This paper provides a comprehensive overview of the various Shrm proteins and their roles in morphogenesis and disease.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    平面细胞极性(PCP)系统对于在3D网络中定位细胞以建立适当的形态发生至关重要。结构,和器官在胚胎发育过程中的功能。PCP系统使用核心PCP组件之间的细胞内反馈相互作用,以协调的平面极化和细胞内细胞群体的不对称分布为特征。PCP信号通过脊椎动物Kupffer囊泡/结中纤毛的极化连接前-后到左-右胚胎平面的极性。对各种基于遗传消融的模型的实验研究证明了PCP在平面极化和相关遗传疾病中的功能。这篇综述论文旨在提供PCP信号历史的全面概述,PCP信号通路的核心组成部分,PCP信号传导的分子机制,与其他信号通路的相互作用,以及PCP在器官和胚胎发育中的作用。此外,我们将深入研究PCP的负反馈调节以保持极性,与PCP缺陷相关的人类遗传疾病,以及与PCP相关的挑战。
    The planar cell polarity (PCP) system is essential for positioning cells in 3D networks to establish the proper morphogenesis, structure, and function of organs during embryonic development. The PCP system uses inter- and intracellular feedback interactions between components of the core PCP, characterized by coordinated planar polarization and asymmetric distribution of cell populations inside the cells. PCP signaling connects the anterior-posterior to left-right embryonic plane polarity through the polarization of cilia in the Kupffer\'s vesicle/node in vertebrates. Experimental investigations on various genetic ablation-based models demonstrated the functions of PCP in planar polarization and associated genetic disorders. This review paper aims to provide a comprehensive overview of PCP signaling history, core components of the PCP signaling pathway, molecular mechanisms underlying PCP signaling, interactions with other signaling pathways, and the role of PCP in organ and embryonic development. Moreover, we will delve into the negative feedback regulation of PCP to maintain polarity, human genetic disorders associated with PCP defects, as well as challenges associated with PCP.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Preprint
    在斑马鱼的内耳半规管形态发生过程中,图案化的管区表达细胞外基质成分合成的基因。这些包括透明质酸和透明质酸结合硫酸软骨素蛋白聚糖Versican,在许多发育器官的基质中丰富。带电透明质酸盐聚合物通过渗透膨胀在运河形态发生中起关键作用。然而,控制基质成分合成和调节透明质酸盐密度和肿胀的发育因素是未知的。这里,我们确定了转录因子,Lmx1b,作为透明质酸的正转录调节因子,Versican,和软骨素合成基因对运河形态发生至关重要。我们表明Versican通过其蛋白质核心调节透明质酸密度,而带电荷的软骨素侧链有助于透明质酸盐的渗透溶胀。透明质酸盐基质的Versican调节特性可能是形态发生中广泛使用的机制,对于理解这些基质受损的疾病具有重要意义。以及用于组织再生的水凝胶工程。
    这里,我们揭示了透明质酸结合蛋白聚糖的功能,Versican,及其硫酸软骨素侧链在调节富含透明质酸盐的ECM的密度和水合作用以产生力,在转录因子Lmx1b的控制下,斑马鱼内耳半规管形态发生成功。
    During inner ear semicircular canal morphogenesis in zebrafish, patterned canal-genesis zones express genes for extracellular matrix component synthesis. These include hyaluronan and the hyaluronan-binding chondroitin sulfate proteoglycan Versican, which are abundant in the matrices of many developing organs. Charged hyaluronate polymers play a key role in canal morphogenesis through osmotic swelling. However, the developmental factor(s) that control the synthesis of the matrix components and regulation of hyaluronate density and swelling are unknown. Here, we identify the transcription factor, Lmx1b, as a positive transcriptional regulator of hyaluronan, Versican, and chondroitin synthesis genes crucial for canal morphogenesis. We show that Versican regulates hyaluronan density through its protein core, whereas the charged chondroitin side chains contribute to the osmotic swelling of hyaluronate. Versican-tuned properties of hyaluronate matrices may be a broadly used mechanism in morphogenesis with important implications for understanding diseases where these matrices are impaired, and for hydrogel engineering for tissue regeneration.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    指导胚胎发育的基因组的系统功能分析是一个重要的挑战。为了应对这一挑战,我们使用C.elegans胚胎发生的4D成像来捕获500个基因敲除的影响,并开发了一种自动化方法来比较发育表型。自动化方法量化特征-包括胚层细胞数,组织位置,和组织形状-生成其参数化产生数值表型特征的时间曲线。结合跨表型空间运行的新相似性度量,这些特征使得能够生成预测具有相似功能的基因的排名列表,在PhenoBank门户网站中访问,25%的必需发育基因。该方法确定了细胞命运规范和形态发生中的新基因和途径关系,并强调了胚胎发生过程中专门能量产生途径的利用。总的来说,这项工作为全面分析构建多细胞生物的基因集奠定了基础。
    Systematic functional profiling of the gene set that directs embryonic development is an important challenge. To tackle this challenge, we used 4D imaging of C. elegans embryogenesis to capture the effects of 500 gene knockdowns and developed an automated approach to compare developmental phenotypes. The automated approach quantifies features-including germ layer cell numbers, tissue position, and tissue shape-to generate temporal curves whose parameterization yields numerical phenotypic signatures. In conjunction with a new similarity metric that operates across phenotypic space, these signatures enabled the generation of ranked lists of genes predicted to have similar functions, accessible in the PhenoBank web portal, for ∼25% of essential development genes. The approach identified new gene and pathway relationships in cell fate specification and morphogenesis and highlighted the utilization of specialized energy generation pathways during embryogenesis. Collectively, the effort establishes the foundation for comprehensive analysis of the gene set that builds a multicellular organism.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    几何标准可用于评估在组织的会聚延伸期间细胞嵌入是主动的还是被动的。
    Geometric criteria can be used to assess whether cell intercalation is active or passive during the convergent extension of tissue.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    后生动物早期胚胎发育的保守过程是卵母细胞受精后的还原性细胞分裂,称为细胞分裂。细胞裂解周期通常同步开始,延长胚胎细胞之间的差异变得异步,在重大形态发生事件之前停止,如胚层形成和原肠胚形成。尽管表现出特定物种的特征,细胞裂解动力学的调节归结为主要在单细胞/细胞核水平起作用的常见控制器,如核-细胞质比和合子基因组激活。值得注意的是,最近的工作已经将细胞裂解动力学与胚胎发育过程中集体行为的出现联系起来,包括模式形成和胚胎尺度力学的变化,提出了单细胞控制器如何协调胚胎尺度过程的问题。在这次审查中,我们总结了跨物种的研究,其中细胞分裂和集体行为之间的关联,讨论潜在的机制,并提出细胞分裂动力学中的细胞间变异性可以作为发育中胚胎的长期协调机制。
    A conserved process of early embryonic development in metazoans is the reductive cell divisions following oocyte fertilization, termed cell cleavages. Cell cleavage cycles usually start synchronously, lengthen differentially between the embryonic cells becoming asynchronous, and cease before major morphogenetic events, such as germ layer formation and gastrulation. Despite exhibiting species-specific characteristics, the regulation of cell cleavage dynamics comes down to common controllers acting mostly at the single cell/nucleus level, such as nucleus-to-cytoplasmic ratio and zygotic genome activation. Remarkably, recent work has linked cell cleavage dynamics to the emergence of collective behavior during embryogenesis, including pattern formation and changes in embryo-scale mechanics, raising the question how single-cell controllers coordinate embryo-scale processes. In this review, we summarize studies across species where an association between cell cleavages and collective behavior was made, discuss the underlying mechanisms, and propose that cell-to-cell variability in cell cleavage dynamics can serve as a mechanism of long-range coordination in developing embryos.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    乳腺密度是乳腺癌的公认危险因素。在最近的一项研究中,诺西等人。揭示了组织硬度的相关增加提高了细胞外信号调节激酶(ERK)的活性,促进孕激素受体依赖性核因子κβ受体激活因子(RANK)信号。因此,僵硬改变了激素信号的背景,增加了乳腺干细胞。这种机制提示了乳腺癌的潜在治疗方法。
    Mammographic density is a well-established risk factor for breast cancer. In a recent study, Northey et al. reveal that the associated increase in tissue stiffness elevates extracellular signal-regulated kinase (ERK) activity, promoting progesterone receptor-dependent receptor activator of nuclear factor κβ (RANK) signaling. Thus, stiffness alters the context of hormonal signaling and increases mammary stem cells. This mechanism suggests potential treatments for breast cancer.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    细胞外基质(ECM)是一种高度复杂的结构,生化和机械信号通过其传输。在细胞迁移过程中,ECM也充当支架,为细胞以及潜在的附着点提供结构支持。尽管ECM是经过充分研究的结构,由于其在生物体内的复杂性和结构变化,其在许多生物过程中的作用仍然难以全面研究。在实验的同时,数学模型有助于完善和检验假设,生成预测,探索实验范围之外的条件。这些模型可以与体内和体外数据结合和校准,以识别驱动发育和稳态过程的关键细胞-ECM相互作用。或疾病的进展。在这次审查中,我们专注于ECM的数学和计算模型,如细胞迁移,包括癌症转移,以及组织结构和形态发生。通过强调这些模型的预测能力,我们的目标是帮助弥合研究ECM的实验和计算方法之间的差距,并为选择适当的模型框架以补充相应的实验研究提供指导。
    The extracellular matrix (ECM) is a highly complex structure through which biochemical and mechanical signals are transmitted. In processes of cell migration, the ECM also acts as a scaffold, providing structural support to cells as well as points of potential attachment. Although the ECM is a well-studied structure, its role in many biological processes remains difficult to investigate comprehensively due to its complexity and structural variation within an organism. In tandem with experiments, mathematical models are helpful in refining and testing hypotheses, generating predictions, and exploring conditions outside the scope of experiments. Such models can be combined and calibrated with in vivo and in vitro data to identify critical cell-ECM interactions that drive developmental and homeostatic processes, or the progression of diseases. In this review, we focus on mathematical and computational models of the ECM in processes such as cell migration including cancer metastasis, and in tissue structure and morphogenesis. By highlighting the predictive power of these models, we aim to help bridge the gap between experimental and computational approaches to studying the ECM and to provide guidance on selecting an appropriate model framework to complement corresponding experimental studies.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    眼睛晶状体的球形形状对于精确聚焦到视网膜上的光至关重要。这种形状是由同心对齐确定的,沿晶状体前后轴的凸出延长的晶状体纤维细胞。在镜头赤道处分化后,纤维细胞的高度随着其顶端和基底尖端向前后极迁移而增加,分别。驱动这种伸长和迁移的力量仍然不清楚。我们发现,仅在经历细胞曲线转换的成熟纤维中观察到膜突起或层状足虫,表明lamellipodium不是早期纤维迁移的主要驱动因素。我们证明了成纤维细胞生长因子(FGF)水平的升高抑制了Rac依赖性突起的延伸,提示FGF控制Rac活性的活性变化,切换到lamellipodium驱动的迁移。岩石抑制剂,肌球蛋白,肌动蛋白降低了早期和晚期纤维的高度,表明这些纤维的伸长依赖于肌动球蛋白的收缩性。始终如一,在这些纤维中检测到活性RhoA。鉴于FGF促进纤维伸长,我们建议通过监管Rho活动来做到这一点。
    The spheroidal shape of the eye lens is crucial for precise light focusing onto the retina. This shape is determined by concentrically aligned, convexly elongated lens fiber cells along the anterior and posterior axis of the lens. Upon differentiation at the lens equator, the fiber cells increase in height as their apical and basal tips migrate towards the anterior and posterior poles, respectively. The forces driving this elongation and migration remain unclear. We found that, in the mouse lens, membrane protrusions or lamellipodia are observed only in the maturing fibers undergoing cell curve conversion, indicating that lamellipodium formation is not the primary driver of earlier fiber migration. We demonstrated that elevated levels of fibroblast growth factor (FGF) suppressed the extension of Rac-dependent protrusions, suggesting changes in the activity of FGF controlling Rac activity, switching to lamellipodium-driven migration. Inhibitors of ROCK, myosin and actin reduced the height of both early and later fibers, indicating that elongation of these fibers relies on actomyosin contractility. Consistent with this, active RhoA was detected throughout these fibers. Given that FGF promotes fiber elongation, we propose that it does so through regulation of Rho activity.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号