Temperature-responsive culture dish

  • 文章类型: Journal Article
    背景:肺切除术后经常观察到由于手术期间内脏胸膜损伤引起的肺漏气(PAL),并且在胸外科手术中很难避免并发症。术后PAL的发展是住院时间延长的最常见原因。以前,我们报道,使用自体真皮成纤维细胞薄片(DFSs)的PALs封闭剂在肺切除术期间成功封闭了术中PALs.
    目的:在本研究中,我们调查了人类DFSs异种移植到肺表面以密封免疫受损大鼠的PAL的命运。采用人成纤维细胞的双色FISH分析来检测肺表面上的移植人细胞。
    结果:移植后一个月,FISH分析显示,移植的人成纤维细胞仍然构成片状结构,和组织学也显示,从受体组织中观察到片材下方的血管生成迁移到片材中。FISH分析显示,即使在移植后3个月,移植的人成纤维细胞仍然保留在薄片中。移植的人成纤维细胞的双色FISH分析由于细胞达到其寿命的终点而稀疏存在,产生细胞外基质的细胞,并留在细胞片内,没有侵入宿主的肺。
    结论:DFS移植的人成纤维细胞显示它们保留在细胞片内并且不侵入宿主的肺。
    BACKGROUND: Pulmonary air leaks (PALs) due to visceral pleura injury during surgery is frequently observed after pulmonary resections and the complication is difficult to avoid in thoracic surgery. The development of postoperative PALs is the most common cause of prolonged hospitalization. Previously, we reported that PALs sealants using autologous dermal fibroblast sheets (DFSs) harvested from temperature-responsive culture dishes successfully closed intraoperative PALs during lung resection.
    OBJECTIVE: In this study, we investigated the fate of human DFSs xenogenetically transplanted onto lung surfaces to seal PALs of immunocompromised rat. Dual-color FISH analyses of human fibroblast was employed to detect transplantation human cells on the lung surface.
    RESULTS: One month after transplantation, FISH analyses revealed that transplanted human fibroblasts still composed a sheet-structure, and histology also showed that beneath the sheet\'s angiogenesis migrating into the sheets was observed from the recipient tissues. FISH analyses revealed that even at 3 months after transplantation, the transplanted human fibroblasts still remained in the sheet. Dual-color FISH analyses of the transplanted human fibroblasts were sparsely present as a result of the cells reaching the end of their lifespan, the cells producing extracellular matrix, and remained inside the cell sheet and did not invade the lungs of the host.
    CONCLUSIONS: DFS-transplanted human fibroblasts showed that they are retained within cell sheets and do not invade the lungs of the host.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    本章介绍了一种体外创建管状心脏组织的方法。管状结构的厚心脏组织是通过在小肠段的内壁上逐步堆叠细胞片来制备的。起到血管床的作用。小肠段的毛细血管由动脉供血,并由静脉引流。因此,心脏组织的灌注培养是通过将培养基连续输注到供应小肠段的动脉血管中来实现的。该技术的目的是通过在小肠的灌注段的内壁上顺序地植入和培养心脏细胞片来制造可以用作泵的管状心脏组织。
    This chapter describes a method for creating tubular cardiac tissue in vitro. Thick cardiac tissue in a tubular configuration is prepared by stacking cell sheets stepwise on the inner wall of a segment of small intestine, which functions as a blood vessel bed. The capillaries of the small intestinal segment are fed by an artery and drained by a vein. Therefore, perfusion culture of the cardiac tissue is achieved by continuously infusing culture medium into the arterial vessel that supplies the segment of small intestine. The aim of this technique is to fabricate tubular cardiac tissue that can function as a pump by sequentially implanting and culturing cardiac cell sheets on the inner wall of a perfused segment of small intestine.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    Confluent cultured cells on a temperature-responsive culture dish can be harvested as an intact cell sheet by decreasing temperature below 32°C. A three-dimensional (3-D) tissue can be fabricated by the layering of cell sheets. A resulting 3-D multilayered cell sheet-tissue on a temperature-responsive culture dish can be also harvested without any damage by only temperature decreasing. For shortening the fabrication time of the 3-D multilayered constructs, we attempted to layer cell sheets on a temperature-responsive culture dish with centrifugation. However, when a cell sheet was attached to the culture surface with a conventional centrifuge at 22-23°C, the cell sheet hardly adhere to the surface due to its noncell adhesiveness. Therefore, in this study, we have developed a heating centrifuge. In centrifugation (55g) at 36-37°C, the cell sheet adhered tightly within 5 min to the dish without significant cell damage. Additionally, centrifugation accelerated the cell sheet-layering process. The heating centrifugation shortened the fabrication time by one-fifth compared to a multilayer tissue fabrication without centrifugation. Furthermore, the multilayered constructs were finally detached from the dishes by decreasing temperature. This rapid tissue-fabrication method will be used as a valuable tool in the field of tissue engineering and regenerative therapy. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 34:692-701, 2018.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    The effect of using vitrified-thawed chondrocyte sheets on articular cartilage repair was examined because the methods for storing chondrocyte sheets are essential for allogeneic chondrocyte sheet transplantation. Six Japanese white rabbits were used as sources of articular chondrocytes and synovial cells. Chondrocytes were harvested from the femur, and synovial cells were harvested from inside the knee joints. After coculture of the chondrocytes with synovial cells, triple-layered chondrocyte sheets were fabricated. Eighteen rabbits were used, with six rabbits in each of three groups: osteochondral defect only (control, group A); chondrocyte sheets (group B); and vitrified-thawed chondrocyte sheets (group C). An osteochondral defect was created on the femur. After transplantation, the weight distribution ratio of the undamaged and damaged limbs was measured as a pain-alleviating effect. The rabbits were euthanized at 12 weeks, and the transplanted tissues were evaluated for histology (Safranin O staining and immunostaining) using the International Cartilage Repair Society grading system. For both evaluations, significant differences were observed between groups A and B, and between groups A and C (p < 0.05). No significant differences were observed between groups B and C. Thus, pain-alleviating effects and tissue repair were achieved using vitrified-thawed chondrocyte sheets. Copyright © 2017 John Wiley & Sons, Ltd.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    Cultured epithelial autograft (CEA) therapy has been used in clinical applications since the 1980s. However, there are some issues related to this treatment that still remain unsolved. Enzymatic treatment is typically used in the collection of epithelial keratinocyte sheets, but it tends to break the adhesion and basement membrane proteins. It is thought that the loss of proteins after enzymatic treatment is responsible for the poor survival of transplanted cell sheets. Our laboratory has developed a temperature-responsive culture dish that does not require enzymatic treatment to harvest the cells. In this study, we compare morphological and survival results from rat epithelial keratinocyte cell sheets harvested by temperature-reducing treatment (TT sheets) against cell sheets harvested by enzymatic (dispase) treatment (DT sheets). TT sheets preserve keratin structure in better conditions and express higher levels of collagen IV and laminin 5 than DT sheets. In order to evaluate cell sheet survival after transplantation, we created an in vivo transplant model. Keratinocyte sheets obtained from GFP-positive animals were transplanted into athymic rats. The survival rate 7 days after transplantation of TT sheet was higher than that of DT sheets. Collagen IV and Laminin 5 expression was observed in the TT sheet transplantation group. These results indicate that the remaining basement membrane proteins are important for initial attachment and cell survival. We believe that the cell sheet harvesting method using temperature-responsive culture dishes provides superior cell survival and can solve one of the roadblocks in CEA therapy. Copyright © 2016 John Wiley & Sons, Ltd.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    Postoperative regeneration of the middle ear mucosa and pneumatization of the middle ear cavity are of great importance after middle ear surgery. This study developed a new method to transplant autologous nasal mucosal epithelial cell sheets into the damaged middle ear cavity. The aim of this study was to evaluate postoperative healing after the transplantation of the cell sheets. Rabbit nasal mucosal epithelial cell sheets were fabricated on a temperature-responsive culture dish, and transplanted into the damaged middle ear of rabbit, which was surgically created. The healing of middle ears was evaluated by histology and X-ray computed tomography after transplantation. Functional evaluation was performed by measuring the maximum middle ear total pressure reflecting a trans-mucosal gas exchange function. Two control groups were used: the normal control group and the mucosa-eliminated control group. Transplantation of cell sheets suppressed the bone hyperplasia and the narrowing of pneumatic space in the middle ear cavity compared with the mucosa-eliminated control group. The mucosal gas exchange function was also better in the cell sheet-transplanted group. Nasal mucosal epithelial cell sheet was confirmed to be useful as an effective graft material after middle ear surgery and hopefully become a novel therapy in the future.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Comparative Study
    OBJECTIVE: The current study compared canine corneal epithelial cell sheets cultivated from limbal stem cells on amniotic membrane, atelocollagen gel, and temperature-responsive culture dish.
    METHODS: We collected limbal epithelial cells from the intact eyes of beagles and cultivated the cells on denuded canine amniotic membranes, temperature-responsive cell culture labware, and collagen gel with 3T3 feeder cells. Immunofluorescence staining for Ki-67 was used to analyze the capacity of cell proliferation in the sheets. Immunofluorescence staining was also performed for the corneal epithelium-specific marker cytokeratin 3 and putative stem cell markers ABCG2 and p63. Reverse-transcription polymerase chain reaction (RT-PCR) was performed to detect ABCG2 and p63.
    RESULTS: The growth rates of the cultivated cells, or the times it took them to reach confluency, were different for the three scaffolds. The cultivated sheet on the temperature-responsive dish consisted of 2-3 layers, while those on the collagen gel and on the amniotic membrane consisted of 5-8 layers. The basal layer cells grown on all three scaffolds expressed putative stem cell markers. In real-time RT-PCR analysis, the highest level of p63 was observed in the sheets grown on collagen gel.
    CONCLUSIONS: In this study, the cells cultured on the collagen gel demonstrated a capacity for cell proliferation, and the expressions of stem cells in the sheets suggested that collagen gel is the most suitable carrier for clinical use.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    The authors aimed to repair and regenerate articular cartilage with layered chondrocyte sheets, produced using temperature-responsive culture dishes. The purpose of this study was to investigate the humoral factors produced by layered chondrocyte sheets. Articular chondrocytes and synovial cells were harvested during total knee arthroplasty. After co-culture, the samples were divided into three groups: a monolayer, 7 day culture sheet group (group M); a triple-layered, 7 day culture sheet group (group L); and a monolayer culture group with a cell count identical to that of group L (group C). The secretion of collagen type 1 (COL1), collagen type 2 (COL2), matrix metalloproteinase-13 (MMP13), transforming growth factor-β (TGFβ), melanoma inhibitory activity (MIA) and prostaglandin E2 (PGE2) were measured by enzyme-linked immunosorbent assay (ELISA). Layered chondrocyte sheets produced the most humoral factors. PGE2 expression declined over time in group C but was significantly higher in groups M and L. TGFβ expression was low in group C but was significantly higher in groups M and L (p<0.05). Our results suggest that the humoral factors produced by layered chondrocyte sheets may contribute to cartilaginous tissue repair and regeneration.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号