Synapses

突触
  • 文章类型: Journal Article
    帕金森病(PD)是一种影响多个大脑系统和回路的多因素疾病。虽然由脑干多巴胺神经元变性引起的运动症状定义,以纹状体为基础的认知功能的衰弱性非运动异常是常见的,出现得早,并且最初独立于多巴胺。在Lrrk2中表达PD相关G2019S错义突变的年轻成年小鼠在基于额叶纹状体的认知任务中也表现出缺陷。在老鼠和人类中,认知功能需要通过α-氨基-3-羟基-5-甲基-4-异恶唑丙酸型谷氨酸受体(AMPAR)的细胞表面运输来动态调节谷氨酸能突触强度,但尚不清楚LRRK2突变如何影响纹状体投射神经元(SPN)中AMPAR运输的动态特征。这里,我们使用Lrrk2G2019S敲入小鼠表明,在背侧纹状体的突变SPN中,表面AMPAR亚基化学计量在生化和功能上都发生了改变,从而有利于GluA1的掺入而不是GluA2的掺入。含有GluA1的AMPAR对细胞表面的内化具有抗性,在突触内部和外部的表面上留下GluA1的过度积累。这对通常支持突触加强的贩运动态产生了负面影响,因为含GluA1的AMPAR未能响应增强刺激而在突触处增加,并显示出显着降低的表面迁移率。含有表面GluA2的AMPARs在突触中以正常水平表达,表明亚基选择性损害。GluA1的异常表面积累与PKA活性无关,仅限于D1RSPN。由于LRRK2突变被认为是常见PD致病途径的一部分,我们的数据表明,持续的,AMPAR组成和运输的纹状体细胞类型特异性变化有助于与PD相关的认知或其他损害。
    Parkinson\'s disease (PD) is a multifactorial disease that affects multiple brain systems and circuits. While defined by motor symptoms caused by degeneration of brainstem dopamine neurons, debilitating non-motor abnormalities in fronto-striatal-based cognitive function are common, appear early, and are initially independent of dopamine. Young adult mice expressing the PD-associated G2019S missense mutation in Lrrk2 also exhibit deficits in fronto-striatal-based cognitive tasks. In mice and humans, cognitive functions require dynamic adjustments in glutamatergic synapse strength through cell-surface trafficking of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid-type glutamate receptors (AMPARs), but it is unknown how LRRK2 mutation impacts dynamic features of AMPAR trafficking in striatal projection neurons (SPNs). Here, we used Lrrk2G2019S knockin mice to show that surface AMPAR subunit stoichiometry is altered biochemically and functionally in mutant SPNs in dorsomedial striatum to favor the incorporation of GluA1 over GluA2. GluA1-containing AMPARs were resistant to internalization from the cell surface, leaving an excessive accumulation of GluA1 on the surface within and outside synapses. This negatively impacted trafficking dynamics that normally support synapse strengthening, as GluA1-containing AMPARs failed to increase at synapses in response to a potentiating stimulus and showed significantly reduced surface mobility. Surface GluA2-containing AMPARs were expressed at normal levels in synapses, indicating subunit-selective impairment. Abnormal surface accumulation of GluA1 was independent of PKA activity and was limited to D1R SPNs. Since LRRK2 mutation is thought to be part of a common PD pathogenic pathway, our data suggest that sustained, striatal cell-type specific changes in AMPAR composition and trafficking contribute to cognitive or other impairments associated with PD.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    发育突触消除对于形成成熟的神经回路至关重要。在新生小鼠小脑,浦肯野细胞(PC)从多个攀爬纤维(CF)接收兴奋性突触输入,并且在出生后第20天左右消除了除一个CF以外的所有CF的突触。CFs和平行纤维(PFs)之间的异质突触相互作用,小脑颗粒细胞(GC)的轴突在PC和分子层中间神经元(MLIs)上形成兴奋性突触,是CF突触消除的关键。然而,这种异突触相互作用的机制在很大程度上是未知的。在这里,我们表明GCs中AMPA型谷氨酸受体功能的缺失会损害PC中代谢型谷氨酸受体1(mGlu1)信号介导的CF突触消除。此外,从MLI中删除NMDA型谷氨酸受体会损害CF突触的消除。我们认为,PF活性通过直接激活PC中的mGlu1并通过激活MLI中的NMDA受体间接增强对PC的抑制作用,对于CF突触消除至关重要。
    Developmental synapse elimination is crucial for shaping mature neural circuits. In the neonatal mouse cerebellum, Purkinje cells (PCs) receive excitatory synaptic inputs from multiple climbing fibers (CFs) and synapses from all but one CF are eliminated by around postnatal day 20. Heterosynaptic interaction between CFs and parallel fibers (PFs), the axons of cerebellar granule cells (GCs) forming excitatory synapses onto PCs and molecular layer interneurons (MLIs), is crucial for CF synapse elimination. However, mechanisms for this heterosynaptic interaction are largely unknown. Here we show that deletion of AMPA-type glutamate receptor functions in GCs impairs CF synapse elimination mediated by metabotropic glutamate receptor 1 (mGlu1) signaling in PCs. Furthermore, CF synapse elimination is impaired by deleting NMDA-type glutamate receptors from MLIs. We propose that PF activity is crucial for CF synapse elimination by directly activating mGlu1 in PCs and indirectly enhancing the inhibition of PCs through activating NMDA receptors in MLIs.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    唐氏综合征(DS)是最常见的染色体疾病,也是智力障碍的主要原因。DS的遗传病因是21号染色体(HSA21)编码基因的额外拷贝;然而,特定HSA21基因在DS发病机制中的作用仍在很大程度上未知.这里,我们鉴定了ZBTB21,一种HSA21编码的锌指蛋白,作为调节突触功能的转录抑制因子。我们发现DS小鼠中Zbtb21基因拷贝数的标准化可以纠正认知能力的缺陷,突触功能,和基因表达。此外,我们证明ZBTB21与典型的cAMP反应元件(CRE)DNA结合,并且其与CRE的结合可能与CRE结合因子(例如CREB)竞争。ZBTB21抑制CRE依赖的基因表达,并导致突触可塑性的负调节,学习和记忆。一起,我们的结果确定ZBTB21是cAMP依赖性基因调控中的CRE结合蛋白和阻遏物,导致DS的认知缺陷。
    Down syndrome (DS) is the most common chromosomal disorder and a major cause of intellectual disability. The genetic etiology of DS is the extra copy of chromosome 21 (HSA21)-encoded genes; however, the contribution of specific HSA21 genes to DS pathogenesis remains largely unknown. Here, we identified ZBTB21, an HSA21-encoded zinc-finger protein, as a transcriptional repressor in the regulation of synaptic function. We found that normalization of the Zbtb21 gene copy number in DS mice corrected deficits in cognitive performance, synaptic function, and gene expression. Moreover, we demonstrated that ZBTB21 binds to canonical cAMP-response element (CRE) DNA and that its binding to CRE could be competitive with CRE-binding factors such as CREB. ZBTB21 represses CRE-dependent gene expression and results in the negative regulation of synaptic plasticity, learning and memory. Together, our results identify ZBTB21 as a CRE-binding protein and repressor in cAMP-dependent gene regulation, contributing to cognitive defects in DS.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    目前,纳米流体突触只能执行基本的神经形态脉冲模式。需要解决的一个直接问题是实现纳米流体尖峰设备,以进一步增强其类似大脑的计算能力。这里,我们报告了使用聚(3,4-亚乙基二氧噻吩)聚苯乙烯磺酸盐膜来实现仿生离子电流诱导的加标。除了模拟各种电脉冲模式,我们的突触可以产生跨膜离子电流诱导的尖峰,这与具有相似阶段和兴奋性的生物动作电位高度相似。此外,尖峰特性可以通过离子和神经化学物质来调节。我们希望这项工作可以为解决方案中的仿生尖峰计算做出贡献。
    Currently, the nanofluidic synapse can only perform basic neuromorphic pulse patterns. One immediate problem that needs to be addressed to further its capability of brain-like computing is the realization of a nanofluidic spiking device. Here, we report the use of a poly(3,4-ethylenedioxythiophene) polystyrene sulfonate membrane to achieve bionic ionic current-induced spiking. In addition to the simulation of various electrical pulse patterns, our synapse could produce transmembrane ionic current-induced spiking, which is highly analogous to biological action potentials with similar phases and excitability. Moreover, the spiking properties could be modulated by ions and neurochemicals. We expect that this work could contribute to biomimetic spiking computing in solution.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    大脑高度复杂的结构需要一种可以解开其连通性的方法。使用体积电子显微镜和专用软件,我们可以跟踪和测量不同脑组织样本中存在的所有神经纤维。有了这个软件工具,个体树突和轴突被追踪,获得每根光纤的简化“骨架”,连接到其相应的突触接触。结果是由突触连接云互连的轴突和树突的复杂网格。为了测试这种方法,我们将其应用于海马的辐射层以及小鼠体感皮层的1层和3层。我们发现神经纤维密集地堆积在神经纤维中,达到每立方毫米9公里。我们获得了突触的数量,树突和轴突的数量和长度,由树突和轴突建立的突触的线性密度,以及它们在树突棘和轴上的位置。通过这种方法获得的定量数据使我们能够识别样本突触组织的细微特征和差异,这在定性分析中可能被忽略了。
    The highly complex structure of the brain requires an approach that can unravel its connectivity. Using volume electron microscopy and a dedicated software we can trace and measure all nerve fibers present within different samples of brain tissue. With this software tool, individual dendrites and axons are traced, obtaining a simplified \"skeleton\" of each fiber, which is linked to its corresponding synaptic contacts. The result is an intricate meshwork of axons and dendrites interconnected by a cloud of synaptic junctions. To test this methodology, we apply it to the stratum radiatum of the hippocampus and layers 1 and 3 of the somatosensory cortex of the mouse. We find that nerve fibers are densely packed in the neuropil, reaching up to 9 kilometers per cubic mm. We obtain the number of synapses, the number and lengths of dendrites and axons, the linear densities of synapses established by dendrites and axons, and their location on dendritic spines and shafts. The quantitative data obtained through this method enable us to identify subtle traits and differences in the synaptic organization of the samples, which might have been overlooked in a qualitative analysis.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    机械传入神经的重复刺激如何影响摄食运动神经元?在重复刺激训练中,检查了从腹肌颊神经节中的机械传入神经群到五个具有不同功能的运动跟随者的单突触连接。机械传入产生了快速和慢速的突触输出,可能是兴奋性或抑制性的。相比之下,其他Aplysia机械影响仅对其追随者产生快速激励。此外,不同运动跟随者的突触连接模式不同。一些追随者既受到快速激励又受到快速抑制,而其他人只接受快速激励。所有追随者在刺激序列中显示出快速突触后电位(PSP)振幅的强烈降低。在某些追随者中,快速和慢速的突触连接具有相反的符号,而在其他追随者中却没有。对于一个追随者,机械传入簇的所有子区域的突触接触不均匀。由于颊神经节神经元神经支配饲喂装置的内部,因此可能会出现颊神经节机械传入和其他腹肌机械传入的性质差异,而不是外表面,并连接到具有不同运动功能的肌肉的运动神经元。快速连接模式表明,这些突触可能会在食物流失时被激活,偏置肌肉组织释放食物。最大的慢抑制性突触PSP可能会导致下一个行为开始的延迟。附加功能也是可能的。
    How does repeated stimulation of mechanoafferents affect feeding motor neurons? Monosynaptic connections from a mechanoafferent population in the Aplysia buccal ganglia to five motor followers with different functions were examined during repeated stimulus trains. The mechanoafferents produced both fast and slow synaptic outputs, which could be excitatory or inhibitory. In contrast, other Aplysia mechanoafferents produce only fast excitation on their followers. In addition, patterns of synaptic connections were different to the different motor followers. Some followers received both fast excitation and fast inhibition, whereas others received exclusively fast excitation. All followers showed strong decreases in fast postsynaptic potential (PSP) amplitude within a stimulus train. Fast and slow synaptic connections were of net opposite signs in some followers but not in others. For one follower, synaptic contacts were not uniform from all subareas of the mechanoafferent cluster. Differences in properties of the buccal ganglia mechanoafferents and other Aplysia mechanoafferents may arise because the buccal ganglia neurons innervate the interior of the feeding apparatus, rather than an external surface, and connect to motor neurons for muscles with different motor functions. Fast connection patterns suggest that these synapses may be activated when food slips, biasing the musculature to release food. The largest slow inhibitory synaptic PSPs may contribute to a delay in the onset of the next behavior. Additional functions are also possible.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    背景:由于医疗需要,孕妇可能需要在全身麻醉下进行非产科手术,孕妇在妊娠后期经常会出现睡眠障碍。临床前研究表明,母亲异氟烷暴露(MISO)或母亲睡眠剥夺(MSD)有助于后代的认知障碍。对小鼠的研究表明,SD可以加重异氟烷引起的认知缺陷。然而,目前尚不清楚MSD是否会加重MISO诱导的后代认知缺陷.本研究的目的是探讨MSD和MISO对子代认知功能的联合作用以及神经炎症和突触功能在MSD+MISO过程中的作用。
    方法:在妊娠日(GD)14,通过吸入将妊娠小鼠暴露于1.4%异氟烷4小时。然后在GD15-21期间对大坝进行SD处理6小时(12:00-18:00小时)。在3个月大的时候,对后代小鼠进行Morris水迷宫测试以评估认知功能。然后使用分子生物学方法评估炎症和抗炎标志物以及突触功能相关蛋白的水平。
    结果:这项研究的结果表明,MISO导致认知功能障碍,MSD加剧了这种影响。此外,MSD加剧了母体异氟烷吸入,导致白细胞介素(IL)-1β的表达水平增强,IL-6和肿瘤坏死因子-α,以及IL-10,突触素,突触后密度-95、生长相关蛋白-43和脑源性神经营养因子。
    结论:我们的发现表明,MSD加重了雄性后代小鼠MISO诱导的认知缺陷,这些结果与神经炎症和突触功能的改变有关。
    BACKGROUND: Pregnant women may need to undergo non-obstetric surgery under general anesthesia owing to medical needs, and pregnant women frequently experience sleep disturbances during late gestation. Preclinical studies demonstrated that maternal isoflurane exposure (MISO) or maternal sleep deprivation (MSD) contributed to cognitive impairments in offspring. Research studies in mice have revealed that SD can aggravate isoflurane-induced cognitive deficits. However, it remains unclear whether MSD aggravates MISO-induced cognitive deficits in offspring. The purpose of this research was to explore the combined effects of MSD and MISO on offspring cognitive function and the role of neuroinflammation and synaptic function in the process of MSD + MISO.
    METHODS: Pregnant mice were exposed to 1.4% isoflurane by inhalation for 4 h on gestational day (GD) 14. Dams were then subjected to SD for 6 h (12:00-18:00 h) during GD15-21. At 3 months of age, the offspring mice were subjected to the Morris water maze test to assess cognitive function. Then the levels of inflammatory and anti-inflammatory markers and synaptic function-related proteins were assessed using molecular biology methods.
    RESULTS: The results of this study demonstrated that MISO led to cognitive dysfunction, an effect that was aggravated by MSD. In addition, MSD exacerbated the maternal isoflurane inhalation, leading to an enhancement in the expression levels of interleukin (IL)-1β, IL-6, and tumor necrosis factor-alpha and a reduction in the hippocampal levels of IL-10, synaptophysin, post-synaptic density-95, growth-associated protein-43, and brain-derived neurotrophic factor.
    CONCLUSIONS: Our findings revealed that MSD aggravated the cognitive deficits induced by MISO in male offspring mice, and these results were associated with neuroinflammation and alternations in synaptic function.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    稳态可塑性代表一组机制,被认为可以恢复神经功能的某些方面。一种称为AMPAergic缩放的机制被认为是稳态控制尖峰活动的可能候选者。然而,最近的研究结果迫使我们重新考虑这一观点,因为几项研究表明,AMPAergic缩放并不是由尖峰的变化直接触发的.此外,研究体内稳态扰动的研究表明,GABA能突触在增加稳态方面可能更为关键。这里,我们的结果表明,GABA能缩放可以稳态控制尖峰水平。我们发现,在皮质培养物中增加或减少尖峰的扰动触发了乘法GABA能的放大和缩小,分别。相比之下,我们发现AMPA受体(AMPAR)或GABAR传递的变化仅通过它们对加标的间接作用影响GABA能缩放。我们建议GABA能缩放比AMPAergic缩放代表了更强的峰值速率稳态指标。
    Homeostatic plasticity represents a set of mechanisms that are thought to recover some aspect of neural function. One such mechanism called AMPAergic scaling was thought to be a likely candidate to homeostatically control spiking activity. However, recent findings have forced us to reconsider this idea as several studies suggest AMPAergic scaling is not directly triggered by changes in spiking. Moreover, studies examining homeostatic perturbations in vivo have suggested that GABAergic synapses may be more critical in terms of spiking homeostasis. Here, we show results that GABAergic scaling can act to homeostatically control spiking levels. We found that perturbations which increased or decreased spiking in cortical cultures triggered multiplicative GABAergic upscaling and downscaling, respectively. In contrast, we found that changes in AMPA receptor (AMPAR) or GABAR transmission only influence GABAergic scaling through their indirect effect on spiking. We propose that GABAergic scaling represents a stronger candidate for spike rate homeostat than AMPAergic scaling.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    螺旋神经节神经元和内毛细胞之间的突触丢失(IHC突触病)导致称为隐性听力损失(HHL)的听觉神经病变,其特征在于正常的听觉阈值,但声音诱发的听觉电位的幅度降低。有人提出,尽管听力图正常,但突触疗法和HHL在具有挑战性的听力任务中的表现不佳。然而,这只在暴露于噪音或耳毒性药物后的动物中进行了测试,这可能导致突触之外的缺陷。此外,尚未评估过数突触对听觉处理的影响。这里,我们研究了通过改变IHC支持细胞中神经营养蛋白3(Ntf3)的表达而增加或减少IHC突触计数的小鼠.正如我们之前所展示的,出生后Ntf3敲低或过表达减少或增加,分别,在不改变耳蜗阈值的情况下,声音诱发听觉电位的IHC突触密度和阈值幅度。我们现在表明,IHC突触密度不会影响声惊吓反射或其脉冲前抑制的幅度。相比之下,间隙前脉冲抑制,听觉时间处理的行为测试,根据Ntf3表达水平降低或增强。这些结果表明IHC突触病会导致HHL中预测的时间处理缺陷。此外,通过增加Ntf3表达和突触密度实现的时间敏锐度改善提示了一种治疗策略,可以改善患有各种病因的突触病的个体的噪声听力。
    Loss of synapses between spiral ganglion neurons and inner hair cells (IHC synaptopathy) leads to an auditory neuropathy called hidden hearing loss (HHL) characterized by normal auditory thresholds but reduced amplitude of sound-evoked auditory potentials. It has been proposed that synaptopathy and HHL result in poor performance in challenging hearing tasks despite a normal audiogram. However, this has only been tested in animals after exposure to noise or ototoxic drugs, which can cause deficits beyond synaptopathy. Furthermore, the impact of supernumerary synapses on auditory processing has not been evaluated. Here, we studied mice in which IHC synapse counts were increased or decreased by altering neurotrophin 3 (Ntf3) expression in IHC supporting cells. As we previously showed, postnatal Ntf3 knockdown or overexpression reduces or increases, respectively, IHC synapse density and suprathreshold amplitude of sound-evoked auditory potentials without changing cochlear thresholds. We now show that IHC synapse density does not influence the magnitude of the acoustic startle reflex or its prepulse inhibition. In contrast, gap-prepulse inhibition, a behavioral test for auditory temporal processing, is reduced or enhanced according to Ntf3 expression levels. These results indicate that IHC synaptopathy causes temporal processing deficits predicted in HHL. Furthermore, the improvement in temporal acuity achieved by increasing Ntf3 expression and synapse density suggests a therapeutic strategy for improving hearing in noise for individuals with synaptopathy of various etiologies.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    背景:VPS50蛋白在突触和致密核心囊泡酸化中起作用,VPS50功能的扰动会导致秀丽隐杆线虫的行为变化。VPS50突变的患者表现出严重的发育迟缓和智力障碍,与自闭症谱系障碍(ASDs)相关的特征。将VPS50突变与ASD联系起来的机制尚不清楚。
    结果:为了研究VPS50在哺乳动物大脑功能和行为中的作用,我们使用CRISPR/Cas9系统在培养的小鼠皮质神经元和活体小鼠中产生VPS50敲除。在培养的神经元中,VPS50的KO不影响突触小泡的数量,但确实导致V-ATPaseV1域泵的错位和突触活动受损,可能是囊泡酸化和囊泡含量缺陷的结果。在老鼠身上,海马中VPS50的马赛克KO改变了突触传递和可塑性,并产生了强烈的认知障碍。
    结论:我们建议VPS50作为辅助蛋白发挥作用,以帮助V-ATPaseV1结构域募集到突触小泡,从而在控制突触小泡酸化中起着至关重要的作用。了解ASD相关突变中控制行为和突触功能的机制对于制定针对性干预措施至关重要。这可能为针对ASD和相关疾病的治疗策略开辟新的途径。
    BACKGROUND: The VPS50 protein functions in synaptic and dense core vesicle acidification, and perturbations of VPS50 function produce behavioral changes in Caenorhabditis elegans. Patients with mutations in VPS50 show severe developmental delay and intellectual disability, characteristics that have been associated with autism spectrum disorders (ASDs). The mechanisms that link VPS50 mutations to ASD are unknown.
    RESULTS: To examine the role of VPS50 in mammalian brain function and behavior, we used the CRISPR/Cas9 system to generate knockouts of VPS50 in both cultured murine cortical neurons and living mice. In cultured neurons, KO of VPS50 did not affect the number of synaptic vesicles but did cause mislocalization of the V-ATPase V1 domain pump and impaired synaptic activity, likely as a consequence of defects in vesicle acidification and vesicle content. In mice, mosaic KO of VPS50 in the hippocampus altered synaptic transmission and plasticity and generated robust cognitive impairments.
    CONCLUSIONS: We propose that VPS50 functions as an accessory protein to aid the recruitment of the V-ATPase V1 domain to synaptic vesicles and in that way plays a crucial role in controlling synaptic vesicle acidification. Understanding the mechanisms controlling behaviors and synaptic function in ASD-associated mutations is pivotal for the development of targeted interventions, which may open new avenues for therapeutic strategies aimed at ASD and related conditions.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号