Sustainable Chemistry

可持续化学
  • 文章类型: Journal Article
    要获得可降解聚烯烃塑料,乙烯(E)和一氧化碳(CO)的非交替共聚生产聚乙烯(PE)与链酮是特别有吸引力的;它仍然存在重大挑战,例如分子量调节(氢响应)和链端基控制(功能末端)。在这项研究中,我们使用后过渡金属催化剂实现了氢控制的E/CO非交替共聚。该过程产生含有所需的非交替链内酮基(1.0-9.3mol%)且具有范围为43-195kDa的可调分子量的线性PE。在这个反应中,H2作为链转移剂,调节聚合物的分子量,形成独特的醛端基并消除常见的烯属端基;CO经历非交替插入PE链,导致酮-PE的严格非交替结构(>99%)。链内酮基的分散掺入保留了PE的整体性能,并使PE易于光降解,其产生具有明确的乙烯基和乙酰基末端的显著较低分子量的聚合物和低聚物。
    To access degradable polyolefin plastic, non-alternating copolymerization of ethylene (E) and carbon monoxide (CO) for producing polyethylene (PE) with in-chain ketones is particularly appealing; however, it still presents significant challenges such as molecular weight modulation (hydrogen response) and chain endgroup control (functional terminal). In this study, we achieved hydrogen-controlled E/CO non-alternating copolymerization using late transition metal catalysts. This process results in linear PEs containing the desired non-alternating in-chain keto groups (1.0-9.3 mol%) and with tunable molecular weights ranging from 43 to 195 kDa. In this reaction, H2 serves as a chain transfer agent, modulating the polymer\'s molecular weight, forming unique aldehyde endgroups and eliminating usual olefinic endgroups; CO undergoes non-alternating insertion into the PE chain, resulting in a strictly non-alternating structure (> 99%) for the keto-PE. The dispersed incorporation of in-chain keto groups retains bulk properties of PE and makes PE susceptible to photodegradation, which produces significantly lower molecular weight polymers and oligomers with unambiguous vinyl and acetyl terminals.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    如何从基于表面活性剂的微乳液(ME)中有效地回收和再利用表面活性剂一直是一个问题,充满挑战,迫切需要解决。为此,开发了pH触发的沉淀-溶解(PTPD)策略。表面活性剂3-(月桂基氨基)丙烷-1-磺酸钠(LMPS)转化为不溶性沉淀物(LMPS的内盐,LMP)与HCl反应后,通过这种方法,基于LMPS的单相MEs完全去乳化,提供可分离的油混合物,水和LMP。无论ME类型如何,都可以有效地检索LMP(~95.3%),然后可以通过与NaOH反应方便地恢复为LMPS。概念上,LMPS的检索(~96.6%),有毒的苯并[a]芘(BaP,〜99.5%)和来自充分乳化的土壤洗脱液的助表面活性剂正丁醇和油相正庚烷(〜97.1%)的混合物可分别使用PTPD策略和蒸馏,其中土壤洗脱剂是使用基于水包油型LMPS的ME作为洗涤剂从BaP污染的土壤的修复中产生的。它揭示了PTPD策略在含有有毒疏水性有机污染物和过量表面活性剂的土壤洗脱液后处理中的前景。
    How to retrieve and reuse surfactants efficiently from surfactant-based microemulsions (MEs) has long been a problem, which is full of challenges and needs to be solved urgently. To this end, a pH-triggered precipitation-dissolution (PTPD) strategy is developed. The surfactant sodium 3-(laurylamino)propane-1-sulfonate (LMPS) transforms into an insoluble precipitate (the inner salt of LMPS, LMP) after reaction with HCl, by which the monophasic LMPS-based MEs demulsified entirely, giving a separable mixture of oil, water and LMP. LMP can be retrieved efficiently (~95.3%) regardless of the ME type, and can then be conveniently restored to LMPS via reactions with NaOH. Conceptually, the retrieval of LMPS (~96.6%), toxic benzo[a]pyrene (BaP, ~99.5%) and a mixture of co-surfactant n-butanol and the oil phase n-heptane (~97.1%) from the sufficiently emulsified soil eluents is achievable by respectively using the PTPD strategy and distillation, wherein the soil eluents were generated from the remediation of BaP-contaminated soil using an oil-in-water LMPS-based ME as washing agent. It reveals a promising future for the PTPD strategy in the post-processing of soil eluents containing toxic hydrophobic organic contaminants and excessive surfactants.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    可持续发展和可持续化学的概念近年来引起了越来越多的关注,对年轻一代非常重要。在这篇观点文章中,我们分享早期职业化学家如何为其学科的可持续转型做出贡献。我们确定他们可以参与促进变革行动的方式。本文并不试图回答有关在可持续发展背景下推动研究和化学创新的最有前途或紧迫领域的问题。相反,我们希望通过展示教育机会来激励和吸引早期职业化学家追求可持续的行动,外展和决策,研究文化和出版,同时强调现有的挑战和主题的复杂性。我们希望通过为全球可持续的未来提供参与的资源和想法来增强早期职业化学家的能力。虽然这篇文章侧重于学生和早期职业化学家,它提供了进一步刺激来自不同背景的科学家参与的见解。
    The concepts of sustainability and sustainable chemistry have attracted increasing attention in recent years, being of great importance to the younger generation. In this Viewpoint Article, we share how early-career chemists can contribute to the sustainable transformation of their discipline. We identify ways in which they can engage to catalyse action for change. This article does not attempt to answer questions about the most promising or pressing areas driving research and chemical innovation in the context of sustainability. Instead, we want to inspire and engage early-career chemists in pursuing sustainable actions by showcasing opportunities in education, outreach and policymaking, research culture and publishing, while highlighting existing challenges and the complexity of the topic. We want to empower early-career chemists by providing resources and ideas for engagement for a sustainable future globally. While the article focuses on students and early-career chemists, it provides insights to further stimulate the engagement of scientists from diverse backgrounds.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    含有氮官能团和包封的铁基活性位点的碳多孔材料已被建议作为能量转化的电催化剂。然而,它们在通过电催化氢化(ECH)氢化有机底物中的应用仍未探索。在这里,我们报告了用适应的退火程序合成的Fe@C:N材料,并作为苯甲醛氢化的电催化剂进行了测试。使用不同浓度的有机物,和电解结合气相色谱法实验,我们证明,有可能将此类体系结构用于不饱和有机物的ECH。电位控制实验表明,在酸性电解质中,ECH法拉第效率>70%是可能的,同时保持醇对频哪醇二聚产物的选择性。对产物形成速率和周转频率(TOF)值的估计表明,相对于碱和贵金属电极,这些碳封装的体系结构可以在酸性电解质中实现竞争性能。
    Carbon porous materials containing nitrogen functionalities and encapsulated iron-based active sites have been suggested as electrocatalysts for energy conversion, however their applications to the hydrogenation of organic substrates via electrocatalytic hydrogenation (ECH) remain unexplored. Herein, we report on a Fe@C:N material synthesized with an adapted annealing procedure and tested as electrocatalyst for the hydrogenation of benzaldehyde. Using different concentrations of the organic, and electrolysis coupled to gas chromatography experiments, we demonstrate that it is possible to use such architectures for the ECH of unsaturated organics. Potential control experiments show that ECH faradaic efficiencies >70% are possible in acid electrolytes, while maintaining selectivity for the alcohol over the pinacol dimerization product. Estimates of product formation rates and turnover frequency (TOF) values suggest that these carbon-encapsulated architectures can achieve competitive performance in acid electrolytes relative to both base and precious metal electrodes.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    一种可持续和可扩展的方案,用于合成各种官能化的磺胺类药物,来自胺和磺酰氯,已使用对环境负责且可重复使用的氯化胆碱(ChCl)基深共晶溶剂(DES)开发。在ChCl/甘油(1:2molmol-1)和ChCl/尿素(1:2mol-1)中,这些反应在需氧条件下在环境温度下在2-12小时内产生高达97%。该方法的实用性通过FFA4激动剂的可持续合成和抗阿尔茨海默药BMS-299897的关键结构单元来举例说明。电子效应和原料在上述DES中的溶解度特性的微妙相互作用似乎是成功地推动磺酰氯水解的反应的原因。该过程的生态友好性通过E因子和EcoScale等定量指标进行验证,倾析后通过萃取或过滤分离的产品。
    A sustainable and scalable protocol for synthesizing variously functionalized sulfonamides, from amines and sulfonyl chlorides, has been developed using environmentally responsible and reusable choline chloride (ChCl)-based deep eutectic solvents (DESs). In ChCl/glycerol (1:2 mol mol-1) and ChCl/urea (1:2 mol mol-1), these reactions yield up to 97% under aerobic conditions at ambient temperature within 2-12 h. The practicality of the method is exemplified by the sustainable synthesis of an FFA4 agonist and a key building block en route to anti-Alzheimer drug BMS-299897. A subtle interplay of electronic effects and the solubility characteristics of the starting materials in the aforementioned DESs seem to be responsible for driving the reaction successfully over the hydrolysis of sulfonyl chlorides. The procedure\'s eco-friendliness is validated  by quantitative metrics like the E-factor and the EcoScale, with products isolated by extraction or filtration after decantation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    目前,绿色和可持续的含氮化合物电催化转化为氨的需求很高,以取代对生态不友好的Haber-Bosch工艺。通过电沉积金属Co获得硝酸盐还原反应的模型催化剂,Fe,和双金属Fe/Co纳米颗粒从水溶液到石墨基底上。样品通过以下方法进行表征:SEM,XRD,XPS,紫外-可见光谱,循环(和线性)伏安法,计时电流法,和电化学阻抗谱。此外,还对所有电催化剂进行电化学活性表面的测定。最好的电催化剂是在Co纳米颗粒层上含有Fe纳米颗粒的样品,其显示的法拉第效率为58.2%(E=-0.785Vvs.RHE)的氨产率为14.6μmolh-1cm-2(在环境条件下)。有人表示要阐明双金属电催化剂的协同电催化作用机理。这项工作可以主要用作未来研究使用所提出类型的模型催化剂将电催化转化为氨的研究的起点。
    The green and sustainable electrocatalytic conversion of nitrogen-containing compounds to ammonia is currently in high demand in order to replace the eco-unfriendly Haber-Bosch process. Model catalysts for the nitrate reduction reaction were obtained by electrodeposition of metal Co, Fe, and bimetallic Fe/Co nanoparticles from aqueous solutions onto a graphite substrate. The samples were characterized by the following methods: SEM, XRD, XPS, UV-vis spectroscopy, cyclic (and linear) voltammetry, chronoamperometry, and electrochemical impedance spectroscopy. In addition, the determination of the electrochemically active surface was also performed for all electrocatalysts. The best electrocatalyst was a sample containing Fe-nanoparticles on the layer of Co-nanoparticles, which showed a Faradaic efficiency of 58.2% (E = -0.785 V vs. RHE) at an ammonia yield rate of 14.6 μmol h-1 cm-2 (at ambient condition). An opinion was expressed to elucidate the mechanism of coordinated electrocatalytic action of a bimetallic electrocatalyst. This work can serve primarily as a starting point for future investigations on electrocatalytic conversion reactions to ammonia using model catalysts of the proposed type.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    铁(Fe)由于其广泛应用而被认为是最重要的元素之一。近年来,人们对Fe催化作为有机合成中贵金属催化的可持续且具有成本效益的替代品的兴趣日益浓厚。铁的丰度和低毒性,再加上其竞争性反应性和选择性,强调其对可持续合成的吸引力。使用与铝硅酸盐等载体系统杂化的氧化铁的非均相催化剂已经进行了许多催化反应,粘土碳化材料,金属氧化物或聚合物基体。本文综述了铁催化有机转化反应的最新进展。突出的领域包括交叉偶联反应,C-H活化,不对称催化,和级联过程,展示了Fe在一系列合成方法中的多功能性。重点放在机械论的见解上,阐明控制铁催化反应的基本原理。讨论了该领域的挑战和机遇,为未来的研究工作提供路线图。总的来说,这篇综述阐明了铁催化在推动有机化学创新和可持续性方面的变革潜力,对药物发现有影响,材料科学,和超越。
    Iron (Fe) is considered to be one of the most significant elements due to its wide applications. Recent years have witnessed a burgeoning interest in Fe catalysis as a sustainable and cost-effective alternative to noble metal catalysis in organic synthesis. The abundance and low toxicity of Fe, coupled with its competitive reactivity and selectivity, underscore its appeal for sustainable synthesis. A lot of catalytic reactions have been performed using heterogeneous catalysts of Fe oxide hybridized with support systems like aluminosilicates, clays, carbonized materials, metal oxides or polymeric matrices. This review provides a comprehensive overview of the latest advancements in Fe-catalyzed organic transformation reactions. Highlighted areas include cross-coupling reactions, C-H activation, asymmetric catalysis, and cascade processes, showcasing the versatility of Fe across a spectrum of synthetic methodologies. Emphasis is placed on mechanistic insights, elucidating the underlying principles governing iron-catalyzed reactions. Challenges and opportunities in the field are discussed, providing a roadmap for future research endeavors. Overall, this review illuminates the transformative potential of Fe catalysis in driving innovation and sustainability in organic chemistry, with implications for drug discovery, materials science, and beyond.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    好奇化学如何有助于可持续发展?在这篇综述中,我们解释了NCCR资助的本质,NCCR催化的研究重点和结构目标,以及这些如何与可持续发展目标(SDG)保持一致。此外,我们强调参与我们计划的机会。
    Curious about how chemistry can contribute to sustainable development? In this overview, we explain the essence of NCCR funding, the research focus and structural goals of NCCR Catalysis, and how these align with the sustainable development goals (SDGs). Additionally, we highlight opportunities for getting involved with our program.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    在不断升级的环境问题的推动下,合成化学迫切需要一场绿色革命。绿色化学,专注于低环境影响化学品和最大限度地减少废物产生,成为应对这一挑战的强大工具。电子因子等指标通过量化获得目标产品产生的废物来指导化学过程的环保策略的设计,从而使干预措施最小化。酞菁(Pcs),具有特殊物理和化学性质的多功能分子,拥有巨大的技术应用潜力。这篇综述旨在通过收集文献中记录的环境可持续合成的主要例子来弥合绿色化学与酞菁合成之间的差距。选择它们的E因子的计算提供了对整体评估合成过程的重要性的见解。这种方法可以更好地评估酞菁合成过程的实际可持续性,并指出可能的改进策略。
    Driven by escalating environmental concerns, synthetic chemistry faces an urgent need for a green revolution. Green chemistry, with its focus on low environmental impacting chemicals and minimized waste production, emerges as a powerful tool in addressing this challenge. Metrics such as the E-factor guide the design of environmentally friendly strategies for chemical processes by quantifying the waste generated in obtaining target products, thus enabling interventions to minimize it. Phthalocyanines (Pcs), versatile molecules with exceptional physical and chemical properties, hold immense potential for technological applications. This review aims to bridge the gap between green chemistry and phthalocyanine synthesis by collecting the main examples of environmentally sustainable syntheses documented in the literature. The calculation of the E-factor of a selection of them provides insights on how crucial it is to evaluate a synthetic process in its entirety. This approach allows for a better evaluation of the actual sustainability of the phthalocyanine synthetic process and indicates possible strategies to improve it.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    虽然塑料的引入改善了人类的日常生活,塑料垃圾的快速积累,包括微塑料和纳米塑料,最近的研究突出了他们在我们生活的各个方面的参与创造了许多问题。塑料的再循环,将塑料废物转化为高附加值化学品,是一种打击塑料废物的方法,受到越来越多的关注。在这里,我们描述了一种新型的好氧光化学过程,用于将现实生活中的聚苯乙烯基塑料向上循环到苯甲酸中。一种采用噻吨酮衍生物的新工艺,与N-溴代琥珀酰亚胺结合使用,在环境空气和390nm的照射下能够以24-54%的产率在苯甲酸中再循环现实生活中的聚苯乙烯衍生产品。
    Although the introduction of plastics has improved humanity\'s everyday life, the fast accumulation of plastic waste, including microplastics and nanoplastics, have created numerous problems with recent studies highlighting their involvement in various aspects of our lives. Upcycling of plastics, the conversion of plastic waste to high-added value chemicals, is a way to combat plastic waste that is receiving increased attention. Herein, we describe a novel aerobic photochemical process for the upcycling of real-life polystyrene-based plastics into benzoic acid. A new process employing a thioxanthone-derivative, in combination with N-bromosuccinimide, under ambient air and 390 nm irradiation is capable of upcycling real-life polystyrene-derived products in benzoic acid in yields varying from 24-54 %.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号