Self-supervised learning

自监督学习
  • 文章类型: Journal Article
    由于训练过程中的多视图一致性假设,自监督单目深度估计可以在静态环境中表现出出色的性能。然而,在动态场景中考虑运动物体造成的遮挡问题时,很难保持深度的一致性。出于这个原因,我们提出了一种在动态场景中进行单目深度估计的自监督自蒸馏方法(SS-MDE),其中具有多尺度解码器和轻量级姿态网络的深度网络被设计为通过视差以自监督的方式预测深度,运动信息,以及图像序列中两个相邻帧之间的关联。同时,为了提高静态区域的深度估计精度,LeReS网络生成的伪深度图像用于提供伪监督信息,增强静态区域深度细化的效果。此外,利用遗忘因素来减轻对伪监督的依赖。此外,引入了教师模型来生成深度先验信息,并设计了多视图掩码滤波模块来实现特征提取和噪声滤波。这可以使学生模型更好地学习动态场景的深层结构,以自蒸馏的方式增强了整个模型的泛化性和鲁棒性。最后,在四个公共数据数据集上,所提出的SS-MDE方法的性能优于几种最先进的单目深度估计技术,实现89%的精度(δ1),同时在NYU深度V2中将误差(AbsRel)最小化0.102,并且实现87%的精度(δ1),同时在KITTI中将误差(AbsRel)最小化0.111。
    Self-supervised monocular depth estimation can exhibit excellent performance in static environments due to the multi-view consistency assumption during the training process. However, it is hard to maintain depth consistency in dynamic scenes when considering the occlusion problem caused by moving objects. For this reason, we propose a method of self-supervised self-distillation for monocular depth estimation (SS-MDE) in dynamic scenes, where a deep network with a multi-scale decoder and a lightweight pose network are designed to predict depth in a self-supervised manner via the disparity, motion information, and the association between two adjacent frames in the image sequence. Meanwhile, in order to improve the depth estimation accuracy of static areas, the pseudo-depth images generated by the LeReS network are used to provide the pseudo-supervision information, enhancing the effect of depth refinement in static areas. Furthermore, a forgetting factor is leveraged to alleviate the dependency on the pseudo-supervision. In addition, a teacher model is introduced to generate depth prior information, and a multi-view mask filter module is designed to implement feature extraction and noise filtering. This can enable the student model to better learn the deep structure of dynamic scenes, enhancing the generalization and robustness of the entire model in a self-distillation manner. Finally, on four public data datasets, the performance of the proposed SS-MDE method outperformed several state-of-the-art monocular depth estimation techniques, achieving an accuracy (δ1) of 89% while minimizing the error (AbsRel) by 0.102 in NYU-Depth V2 and achieving an accuracy (δ1) of 87% while minimizing the error (AbsRel) by 0.111 in KITTI.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    计算机断层扫描(CT)去噪是医学成像中一项具有挑战性的任务,已引起广泛关注。受监督的网络需要大量嘈杂干净的图像对,在临床环境中始终不可用。现有的用成对噪声图像抑制噪声的自监督算法具有局限性,例如,在训练过程中忽略相似图像对之间的残差,以及对图像频谱信息的学习不足。在这项研究中,我们提出了一个残差图像先验网络(RIP-Net)来充分模拟配对的相似噪声图像之间的残差。我们的方法通过解决现有方法的局限性,为该领域提供了新的见解。我们首先建立了一个数学定理,阐明了基于相似图像的自监督学习和监督学习之间的非等价性。它帮助我们更好地理解自我监督学习的优势和局限性。其次,我们引入了一个新的正则化项来对低频残差图像进行先验建模。这可以提高我们模型的准确性和鲁棒性。最后,我们设计了一个结构良好的去噪网络,能够在探测频谱信息的同时感知上下文消息。该网络具有用于对原始噪声图像中的高频和低频成分进行建模的双路径。此外,上下文感知模块捕获局部和全局交互以生成高质量图像。临床前光子计数CT的综合实验,临床脑部CT,和低剂量CT数据集,证明我们的RIP-Net优于其他无监督去噪方法。
    Computed tomography (CT) denoising is a challenging task in medical imaging that has garnered considerable attention. Supervised networks require a lot of noisy-clean image pairs, which are always unavailable in clinical settings. Existing self-supervised algorithms for suppressing noise with paired noisy images have limitations, such as ignoring the residual between similar image pairs during training and insufficiently learning the spectrum information of images. In this study, we propose a Residual Image Prior Network (RIP-Net) to sufficiently model the residual between the paired similar noisy images. Our approach offers new insights into the field by addressing the limitations of existing methods. We first establish a mathematical theorem clarifying the non-equivalence between similar-image-based self-supervised learning and supervised learning. It helps us better understand the strengths and limitations of self-supervised learning. Secondly, we introduce a novel regularization term to model a low-frequency residual image prior. This can improve the accuracy and robustness of our model. Finally, we design a well-structured denoising network capable of exploring spectrum information while simultaneously sensing context messages. The network has dual paths for modeling high and low-frequency compositions in the raw noisy image. Additionally, context perception modules capture local and global interactions to produce high-quality images. The comprehensive experiments on preclinical photon-counting CT, clinical brain CT, and low-dose CT datasets, demonstrate that our RIP-Net is superior to other unsupervised denoising methods.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • DOI:
    文章类型: Journal Article
    尽管人类视觉理解世界结构的能力在感知世界和做出适当的决定中起着至关重要的作用。人类的感知不仅依赖于视觉,而且融合了来自声学的信息,口头,和视觉刺激。一个活跃的研究领域一直围绕着设计一个有效的框架,该框架可以适应多种模式,并理想地提高现有任务的性能。虽然许多框架已经证明在像ImageNet这样的自然数据集上是有效的,在生物医学领域进行了数量有限的研究。在这项工作中,我们通过利用丰富的资源,将自然数据的可用框架扩展到生物医学数据,非结构化多模态数据可作为放射学图像和报告。我们试图回答这个问题,“对于多模态学习,使用两种学习策略进行自我监督学习和联合学习,哪一个最能改善下游胸片分类任务的视觉表示?\"我们的实验表明,在具有1%和10%标记数据的有限标记数据设置中,多模态和自监督模型的联合学习优于自监督学习,与多模态学习相当。此外,我们发现,多模态学习在分布外的数据集上通常更健壮。该代码可在线公开获得。
    Although human\'s ability to visually understand the structure of the World plays a crucial role in perceiving the World and making appropriate decisions, human perception does not solely rely on vision but amalgamates the information from acoustic, verbal, and visual stimuli. An active area of research has been revolving around designing an efficient framework that adapts to multiple modalities and ideally improves the performance of existing tasks. While numerous frameworks have proved effective on natural datasets like ImageNet, a limited number of studies have been carried out in the biomedical domain. In this work, we extend the available frameworks for natural data to biomedical data by leveraging the abundant, unstructured multi-modal data available as radiology images and reports. We attempt to answer the question, \"For multi-modal learning, self-supervised learning and joint learning using both learning strategies, which one improves the visual representation for downstream chest radiographs classification tasks the most?\". Our experiments indicated that in limited labeled data settings with 1% and 10% labeled data, the joint learning with multi-modal and self-supervised models outperforms self-supervised learning and is at par with multi-modal learning. Additionally, we found that multi-modal learning is generally more robust on out-of-distribution datasets. The code is publicly available online.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    视网膜图像配准由于其在医学实践中的广泛应用而至关重要。在这种情况下,我们提议ConKeD,一种新的深度学习方法来学习用于视网膜图像配准的描述符。与当前的注册方法相比,我们的方法采用了一种新颖的多正多负对比学习策略,该策略可以利用可用训练样本中的其他信息.这使得可以从有限的训练数据中学习高质量的描述符。为了训练和评估ConKeD,我们将这些描述符与特定领域的关键点结合起来,特别是血管分叉和交叉,使用深度神经网络检测。我们的实验结果证明了新的多积极多消极策略的好处,因为它优于广泛使用的三重态损失技术(单正和单负)以及单正多负替代方案。此外,ConKeD与特定领域关键点的组合产生与最先进的视网膜图像配准方法相当的结果,同时提供重要的优势,如避免预处理,利用更少的训练样本,并且需要更少的检测到的关键点,在其他人中。因此,ConKeD显示出促进基于深度学习的视网膜图像配准方法的开发和应用的潜力。
    Retinal image registration is of utmost importance due to its wide applications in medical practice. In this context, we propose ConKeD, a novel deep learning approach to learn descriptors for retinal image registration. In contrast to current registration methods, our approach employs a novel multi-positive multi-negative contrastive learning strategy that enables the utilization of additional information from the available training samples. This makes it possible to learn high-quality descriptors from limited training data. To train and evaluate ConKeD, we combine these descriptors with domain-specific keypoints, particularly blood vessel bifurcations and crossovers, that are detected using a deep neural network. Our experimental results demonstrate the benefits of the novel multi-positive multi-negative strategy, as it outperforms the widely used triplet loss technique (single-positive and single-negative) as well as the single-positive multi-negative alternative. Additionally, the combination of ConKeD with the domain-specific keypoints produces comparable results to the state-of-the-art methods for retinal image registration, while offering important advantages such as avoiding pre-processing, utilizing fewer training samples, and requiring fewer detected keypoints, among others. Therefore, ConKeD shows a promising potential towards facilitating the development and application of deep learning-based methods for retinal image registration.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    目的:对患者隐私问题的担忧限制了医学深度学习模型在某些现实场景中的应用。差分隐私(DP)可以通过将随机噪声注入模型来缓解此问题。然而,由于医学模型的高维度和有限的标记样本,天真地将DP应用于医学模型将无法在隐私和效用之间实现令人满意的平衡。
    方法:这项工作提出了DP-SSLoRA模型,结合差分隐私和自监督低秩适应的医学图像隐私保护分类模型。在这项工作中,一种自我监督的预训练方法用于从未标记的公开可用的医疗数据中获得增强的表示。然后,采用低秩分解方法来减轻差分私有噪声的影响,并结合预训练特征对私有数据集进行分类任务。
    结果:在使用三个真实胸部X射线数据集的分类实验中,DP-SSLoRA具有强大的隐私保证,可实现良好的性能。在△=2的前提下,RSNA的AUC为0.942,Covid-QU-mini的AUC为0.9658,胸部X光15k的AUC为0.9886。
    结论:在真实的胸部X射线数据集上进行的大量实验表明,DP-SSLoRA可以在更强的隐私保证下实现令人满意的性能。本研究为医学领域的隐私保护研究提供了指导。源代码是公开的在线。https://github.com/oneheartforone/DP-SSLoRA。
    OBJECTIVE: Concerns about patient privacy issues have limited the application of medical deep learning models in certain real-world scenarios. Differential privacy (DP) can alleviate this problem by injecting random noise into the model. However, naively applying DP to medical models will not achieve a satisfactory balance between privacy and utility due to the high dimensionality of medical models and the limited labeled samples.
    METHODS: This work proposed the DP-SSLoRA model, a privacy-preserving classification model for medical images combining differential privacy with self-supervised low-rank adaptation. In this work, a self-supervised pre-training method is used to obtain enhanced representations from unlabeled publicly available medical data. Then, a low-rank decomposition method is employed to mitigate the impact of differentially private noise and combined with pre-trained features to conduct the classification task on private datasets.
    RESULTS: In the classification experiments using three real chest-X ray datasets, DP-SSLoRA achieves good performance with strong privacy guarantees. Under the premise of ɛ=2, with the AUC of 0.942 in RSNA, the AUC of 0.9658 in Covid-QU-mini, and the AUC of 0.9886 in Chest X-ray 15k.
    CONCLUSIONS: Extensive experiments on real chest X-ray datasets show that DP-SSLoRA can achieve satisfactory performance with stronger privacy guarantees. This study provides guidance for studying privacy-preserving in the medical field. Source code is publicly available online. https://github.com/oneheartforone/DP-SSLoRA.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    单细胞RNA测序(scRNA-seq)能够研究控制细胞异质性和多样性的复杂机制。聚类分析仍然是scRNA-seq中用于辨别细胞类型的关键工具。然而,持续的挑战来自噪音,高维,并在单细胞数据中退出。尽管scRNA-seq聚类方法的增殖,这些通常专注于从单个细胞表达数据中提取表示,忽略潜在的细胞间关系。为了克服这个限制,我们介绍一下scGAAC,一种基于注意力图卷积自动编码器的新聚类方法。通过图形注意力自动编码器利用单元之间的结构信息,scGAAC揭示潜在的关系,同时从单细胞基因表达模式中提取表征信息。注意力融合模块通过注意力权重来合并图形注意力自动编码器和自动编码器的学习特征。最终,自监督学习策略指导模型优化。scGAAC,一个无假设的框架,在四个真实的scRNA-seq数据集上比大多数最先进的方法表现更好。scGAAC实现在Github上公开可用,网址为:https://github.com/labiip/scGAAC。
    Single-cell RNA-sequencing (scRNA-seq) enables the investigation of intricate mechanisms governing cell heterogeneity and diversity. Clustering analysis remains a pivotal tool in scRNA-seq for discerning cell types. However, persistent challenges arise from noise, high dimensionality, and dropout in single-cell data. Despite the proliferation of scRNA-seq clustering methods, these often focus on extracting representations from individual cell expression data, neglecting potential intercellular relationships. To overcome this limitation, we introduce scGAAC, a novel clustering method based on an attention-based graph convolutional autoencoder. By leveraging structural information between cells through a graph attention autoencoder, scGAAC uncovers latent relationships while extracting representation information from single-cell gene expression patterns. An attention fusion module amalgamates the learned features of the graph attention autoencoder and the autoencoder through attention weights. Ultimately, a self-supervised learning policy guides model optimization. scGAAC, a hypothesis-free framework, performs better on four real scRNA-seq datasets than most state-of-the-art methods. The scGAAC implementation is publicly available on Github at: https://github.com/labiip/scGAAC.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    由于临床样本获取困难,标签成本高,罕见皮肤病的特点是数据稀缺,使得训练深度神经网络进行分类具有挑战性。近年来,少量学习已经成为一种有希望的解决方案,使模型能够通过有限的标记样本识别未发现的疾病类别。然而,大多数现有方法忽略了罕见皮肤病的细粒度性质,导致在推广到高度相似的类时性能较差。此外,从有限的标记数据中学习到的分布是有偏差的,严重损害模型的泛化性。针对上述问题,提出了一种自监督分布校准网络(SS-DCN)。具体来说,SS-DCN在预训练期间采用多任务学习框架。通过引入自我监督任务来帮助监督学习,该模型可以学习更多的辨别性和可转移的视觉表示。此外,SS-DCN应用了增强的分布校准(EDC)策略,它利用具有足够样本的基类的统计信息来校准具有少量样本的新类的偏差分布。通过从校准的分布中产生更多的样本,EDC可以为后续分类器训练提供足够的监督。所提出的方法在三个公共皮肤病数据集上进行了评估(即,ISIC2018,Derm7pt,和SD198),与最先进的方法相比,实现了显著的性能改进。
    Due to the difficulty in obtaining clinical samples and the high cost of labeling, rare skin diseases are characterized by data scarcity, making training deep neural networks for classification challenging. In recent years, few-shot learning has emerged as a promising solution, enabling models to recognize unseen disease classes by limited labeled samples. However, most existing methods ignored the fine-grained nature of rare skin diseases, resulting in poor performance when generalizing to highly similar classes. Moreover, the distributions learned from limited labeled data are biased, severely impairing the model\'s generalizability. This paper proposes a self-supervision distribution calibration network (SS-DCN) to address the above issues. Specifically, SS-DCN adopts a multi-task learning framework during pre-training. By introducing self-supervised tasks to aid in supervised learning, the model can learn more discriminative and transferable visual representations. Furthermore, SS-DCN applied an enhanced distribution calibration (EDC) strategy, which utilizes the statistics of base classes with sufficient samples to calibrate the bias distribution of novel classes with few-shot samples. By generating more samples from the calibrated distribution, EDC can provide sufficient supervision for subsequent classifier training. The proposed method is evaluated on three public skin disease datasets(i.e., ISIC2018, Derm7pt, and SD198), achieving significant performance improvements over state-of-the-art methods.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    糖尿病,以血糖水平升高为特征,会导致一种叫做糖尿病视网膜病变(DR)的疾病,由于血糖升高影响视网膜血管而对眼睛产生不利影响。糖尿病患者失明的最常见原因被认为是糖尿病视网膜病变(DR)。特别是生活在贫穷国家的劳动年龄个人。患有1型或2型糖尿病的人可能会患上这种疾病,随着糖尿病的持续时间和血糖管理的不足,风险也会增加。早期识别糖尿病性视网膜病变(DR)的传统方法存在局限性。为了诊断糖尿病性视网膜病变,在这项研究中,基于卷积神经网络(CNN)的模型以一种独特的方式被使用。建议的模型使用了许多深度学习(DL)模型,例如VGG19、Resnet50和InceptionV3,以提取特征。串联后,这些特征通过CNN算法进行分类。通过结合几种模式的优点,集成方法可以成为检测糖尿病视网膜病变并提高整体性能和弹性的有效工具。分类和图像识别只是可以通过集成方法(如VGG19,InceptionV3和Resnet50的组合)来实现高精度的一些任务。使用可公开访问的眼底图像集合来评估所提出的模型。VGG19、ResNet50和InceptionV3的神经网络架构不同,特征提取功能,目标检测方法,和视网膜轮廓的方法。VGG19可能擅长捕捉细节,ResNet50在识别复杂模式中,和InceptionV3在有效地捕获多尺度特征。它们在集成方法中的组合使用可以提供视网膜图像的全面分析,帮助描绘视网膜区域和识别与糖尿病视网膜病变相关的异常。例如,微动脉瘤,最早的DR征象,通常需要精确检测细微的血管异常。VGG19在捕捉精细细节方面的熟练程度允许识别视网膜形态的这些微小变化。另一方面,ResNet50的优势在于识别复杂的模式,使其有效检测新血管形成和复杂的出血性病变。同时,InceptionV3的多尺度特征提取可以实现综合分析,对于评估不同视网膜层的黄斑水肿和缺血性变化至关重要。
    Diabetes, characterized by heightened blood sugar levels, can lead to a condition called Diabetic Retinopathy (DR), which adversely impacts the eyes due to elevated blood sugar affecting the retinal blood vessels. The most common cause of blindness in diabetics is thought to be Diabetic Retinopathy (DR), particularly in working-age individuals living in poor nations. People with type 1 or type 2 diabetes may develop this illness, and the risk rises with the length of diabetes and inadequate blood sugar management. There are limits to traditional approaches for the early identification of diabetic retinopathy (DR). In order to diagnose diabetic retinopathy, a model based on Convolutional neural network (CNN) is used in a unique way in this research. The suggested model uses a number of deep learning (DL) models, such as VGG19, Resnet50, and InceptionV3, to extract features. After concatenation, these characteristics are sent through the CNN algorithm for classification. By combining the advantages of several models, ensemble approaches can be effective tools for detecting diabetic retinopathy and increase overall performance and resilience. Classification and image recognition are just a few of the tasks that may be accomplished with ensemble approaches like combination of VGG19,Inception V3 and Resnet 50 to achieve high accuracy. The proposed model is evaluated using a publicly accessible collection of fundus images.VGG19, ResNet50, and InceptionV3 differ in their neural network architectures, feature extraction capabilities, object detection methods, and approaches to retinal delineation. VGG19 may excel in capturing fine details, ResNet50 in recognizing complex patterns, and InceptionV3 in efficiently capturing multi-scale features. Their combined use in an ensemble approach can provide a comprehensive analysis of retinal images, aiding in the delineation of retinal regions and identification of abnormalities associated with diabetic retinopathy. For instance, micro aneurysms, the earliest signs of DR, often require precise detection of subtle vascular abnormalities. VGG19\'s proficiency in capturing fine details allows for the identification of these minute changes in retinal morphology. On the other hand, ResNet50\'s strength lies in recognizing intricate patterns, making it effective in detecting neoneovascularization and complex haemorrhagic lesions. Meanwhile, InceptionV3\'s multi-scale feature extraction enables comprehensive analysis, crucial for assessing macular oedema and ischaemic changes across different retinal layers.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    时间序列是许多领域中的典型数据类型;但是,标记大量的时间序列数据可能是昂贵且耗时的。从未标记的时间序列数据中学习有效的表示是一项具有挑战性的任务。对比学习是一种很有前途的获取未标记时间序列数据表示的方法。因此,我们通过时频融合对比(TF-FC)提出了一种自监督的时间序列表示学习框架,以从未标记的数据中学习时间序列表示。具体来说,TF-FC将时域增强与频域增强相结合以生成不同的样本。对于时域增强,原始时间序列数据通过时域增强库(如抖动,缩放,排列,和掩码)并获取时域增强数据。对于频域增强,首先,在快速傅里叶变换(FFT)分析之后,原始时间序列经历到频域数据的转换。然后,频率数据通过频域增强组(如低通滤波器,移除频率,添加频率,和相移),并获得频域增强数据。时域增强数据和频域增强数据的融合方法是核PCA,这对于提取高维空间中的非线性特征很有用。通过捕获时间序列的时域和频域,所提出的方法能够从数据中提取更多的信息特征,增强模型区分不同时间序列的能力。为了验证TF-FC方法的有效性,我们在四个时间序列数据集上进行了实验(即,睡眠脑电图,HAR,手势,和癫痫)。实验结果表明,与其他SOTA方法相比,TF-FC的识别精度明显提高。
    Time series is a typical data type in numerous domains; however, labeling large amounts of time series data can be costly and time-consuming. Learning effective representation from unlabeled time series data is a challenging task. Contrastive learning stands out as a promising method to acquire representations of unlabeled time series data. Therefore, we propose a self-supervised time-series representation learning framework via Time-Frequency Fusion Contrasting (TF-FC) to learn time-series representation from unlabeled data. Specifically, TF-FC combines time-domain augmentation with frequency-domain augmentation to generate the diverse samples. For time-domain augmentation, the raw time series data pass through the time-domain augmentation bank (such as jitter, scaling, permutation, and masking) and get time-domain augmentation data. For frequency-domain augmentation, first, the raw time series undergoes conversion into frequency domain data following Fast Fourier Transform (FFT) analysis. Then, the frequency data passes through the frequency-domain augmentation bank (such as low pass filter, remove frequency, add frequency, and phase shift) and gets frequency-domain augmentation data. The fusion method of time-domain augmentation data and frequency-domain augmentation data is kernel PCA, which is useful for extracting nonlinear features in high-dimensional spaces. By capturing both the time and frequency domains of the time series, the proposed approach is able to extract more informative features from the data, enhancing the model\'s capacity to distinguish between different time series. To verify the effectiveness of the TF-FC method, we conducted experiments on four time series domain datasets (i.e., SleepEEG, HAR, Gesture, and Epilepsy). Experimental results show that TF-FC significantly improves in recognition accuracy compared with other SOTA methods.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    高效的多模态图像融合在基础设施的无损评估(NDE)中起着重要作用,其中一个基本的挑战是精确可视化的缺陷。虽然自动检测缺陷代表了一个显著的进步,同时确定表面和亚表面缺陷的精确位置是至关重要的。因此,可见光和红外数据融合策略对于获取全面和互补的信息以检测巨大结构中的缺陷至关重要。本文提出了一种基于欧氏评估的红外和可见光图像配准方法,并在关键点阈值和非最大抑制之间进行权衡。此外,我们采用多模态融合策略来研究图像配准结果的鲁棒性。
    Efficient multi-modal image fusion plays an important role in the non-destructive evaluation (NDE) of infrastructures, where an essential challenge is the precise visualizing of defects. While automatic defect detection represents a significant advancement, the determination of the precise location of both surface and subsurface defects simultaneously is crucial. Hence, visible and infrared data fusion strategies are essential for acquiring comprehensive and complementary information to detect defects across vast structures. This paper proposes an infrared and visible image registration method based on Euclidean evaluation together with a trade-off between key-point threshold and non-maximum suppression. Moreover, we employ a multi-modal fusion strategy to investigate the robustness of our image registration results.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号