Retinaldehyde

视黄醛
  • 文章类型: Journal Article
    视紫红质是神经科学中流行的光遗传学工具,但在机械上仍然知之甚少。在这里,我们报告了来自莱茵衣藻和H.catenoideskalium通道视紫红质2(ChR2)的低温EM结构。我们显示ChR2将内源性N-视黄亚甲基-PE样分子招募到先前未识别的外侧视网膜结合口袋,在HEK293细胞中表现出降低的光响应。相比之下,H.catenoideskalium通道视紫红质(KCR1)在相同条件下在其经典视网膜结合袋中结合内源性视网膜。然而,外源ATR降低野生型KCR1的光电流大小,并抑制其泄漏突变体C110T。我们的结果揭示了哺乳动物细胞中不同的视网膜发色团与通道视紫红质的不同结合模式,这可能进一步激发下一代光遗传学的复杂任务,如细胞命运控制。
    Channelrhodopsins are popular optogenetic tools in neuroscience, but remain poorly understood mechanistically. Here we report the cryo-EM structures of channelrhodopsin-2 (ChR2) from Chlamydomonas reinhardtii and H. catenoides kalium channelrhodopsin (KCR1). We show that ChR2 recruits an endogenous N-retinylidene-PE-like molecule to a previously unidentified lateral retinal binding pocket, exhibiting a reduced light response in HEK293 cells. In contrast, H. catenoides kalium channelrhodopsin (KCR1) binds an endogenous retinal in its canonical retinal binding pocket under identical condition. However, exogenous ATR reduces the photocurrent magnitude of wild type KCR1 and also inhibits its leaky mutant C110T. Our results uncover diverse retinal chromophores with distinct binding patterns for channelrhodopsins in mammalian cells, which may further inspire next generation optogenetics for complex tasks such as cell fate control.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    微生物离子抽运视紫红质(MR)是广泛研究的视网膜结合膜蛋白。然而,它们的生物发生,包括寡聚化和视网膜掺入,仍然知之甚少。细菌吸收绿光的质子泵蛋白视紫红质(GPR)已成为MR的模型蛋白,并在此使用低温电子显微镜(cryo-EM)和分子动力学(MD)模拟来解决这些悬而未决的问题。具体来说,关于GPR化学计量的相互矛盾的研究报告了五聚体和六聚体混合物,但没有提供可能的组装机制。我们报告了GPR突变体的五聚体和六聚体冷冻-EM结构,揭示未加工的N端信号肽在六聚体GPR组装中的作用。此外,某些表达蛋白视紫红质的细菌缺乏视网膜生物合成途径,表明他们从环境中清除了辅因子。我们通过解决无视网膜蛋白聚糖的低温EM结构来阐明这一假设,与质谱和MD模拟一起表明癸酸酯在发色团结合袋中充当视网膜的临时占位符。进一步的MD模拟阐明了癸酸酯和视黄醛交换的可能途径,提供清除视网膜的机制.总的来说,我们的发现提供了对MR的生物发生的见解,包括它们的寡聚组装,通过潜在的辅因子清除机制,在原药化学计量和视网膜掺入中的变化。
    Microbial ion-pumping rhodopsins (MRs) are extensively studied retinal-binding membrane proteins. However, their biogenesis, including oligomerisation and retinal incorporation, remains poorly understood. The bacterial green-light absorbing proton pump proteorhodopsin (GPR) has emerged as a model protein for MRs and is used here to address these open questions using cryo-electron microscopy (cryo-EM) and molecular dynamics (MD) simulations. Specifically, conflicting studies regarding GPR stoichiometry reported pentamer and hexamer mixtures without providing possible assembly mechanisms. We report the pentameric and hexameric cryo-EM structures of a GPR mutant, uncovering the role of the unprocessed N-terminal signal peptide in the assembly of hexameric GPR. Furthermore, certain proteorhodopsin-expressing bacteria lack retinal biosynthesis pathways, suggesting that they scavenge the cofactor from their environment. We shed light on this hypothesis by solving the cryo-EM structure of retinal-free proteoopsin, which together with mass spectrometry and MD simulations suggests that decanoate serves as a temporary placeholder for retinal in the chromophore binding pocket. Further MD simulations elucidate possible pathways for the exchange of decanoate and retinal, offering a mechanism for retinal scavenging. Collectively, our findings provide insights into the biogenesis of MRs, including their oligomeric assembly, variations in protomer stoichiometry and retinal incorporation through a potential cofactor scavenging mechanism.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    NADPH,胞质溶胶中还原当量的主要来源,用于脊椎动物杆状感光体外段,以减少从光激活的视觉色素释放的全反式视网膜到全反式视黄醇。视觉色素的光活化将11-顺式视网膜发色团异构化为全反式,从而摧毁它并需要它的再生。全反式视黄醛的释放和减少是再生视觉色素的一系列反应中的第一步。葡萄糖和谷氨酰胺都可以支持全反式视黄醛减少到视黄醇,表明杆状光感受器外节段中使用的NADPH可以通过戊糖磷酸途径以及线粒体连接的途径产生。我们已经使用全反式视黄醛到全反式视黄醇的转化来检查除谷氨酰胺以外的氨基酸是否也可以支持杆状光感受器中NADPH的产生。我们已经通过对细胞暴露于光后产生的全反式视黄醛和视黄醇的荧光进行成像,在单个分离的小鼠杆状光感受器中测量了这种转化。与以前的工作一致,我们发现5mM葡萄糖或0.5mM谷氨酰胺支持70-80%的全反式视黄醛向视黄醇的转化,对应于10%的NADP分数降低。0.5mM浓度的所有其他氨基酸支持转化的程度要小得多,表明NADP分数最多减少1-2%。牛磺酸在支持NADPH生成方面也无效,而甲酸,甲醇的有毒代谢产物,通过葡萄糖或谷氨酰胺抑制NADPH的产生。
    NADPH, the primary source of reducing equivalents in the cytosol, is used in vertebrate rod photoreceptor outer segments to reduce the all-trans retinal released from photoactivated visual pigment to all-trans retinol. Light activation of the visual pigment isomerizes the 11-cis retinal chromophore to all-trans, thereby destroying it and necessitating its regeneration. Release and reduction of all-trans retinal are the first steps in the series of reactions that regenerate the visual pigment. Glucose and glutamine can both support the reduction of all-trans retinal to retinol, indicating that the NADPH used in rod photoreceptor outer segments can be generated by the pentose phosphate pathway as well as by mitochondria-linked pathways. We have used the conversion of all-trans retinal to all-trans retinol to examine whether amino acids other than glutamine can also support the generation of NADPH in rod photoreceptors. We have measured this conversion in single isolated mouse rod photoreceptors by imaging the fluorescence of the all-trans retinal and retinol generated after exposure of the cells to light. In agreement with previous work, we find that 5 mM glucose or 0.5 mM glutamine support the conversion of ∼70-80% of all-trans retinal to retinol, corresponding to a reduced NADP fraction of ∼10%. All other amino acids at 0.5 mM concentration support the conversion to a much lesser extent, indicating reduced NADP fractions of 1-2% at most. Taurine was also ineffective at supporting NADPH generation, while formic acid, the toxic metabolite of methanol, suppressed the generation of NADPH by either glucose or glutamine.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    动物的视觉依赖于视蛋白,一类G蛋白偶联受体(GPCR),通过共价附着在视网膜上实现光敏感性。通常作为反向激动剂结合,11-顺式视网膜光异构化成全反式异构体并激活受体,启动下游信令级联。结合到双稳态视蛋白的视网膜在吸收第二个光子后异构化回到11-顺式状态,使受体失活。双稳态视蛋白对于整个动物界的无脊椎动物视觉和非视觉光感知至关重要。虽然晶体结构可用于非活动状态的双稳态视蛋白,事实证明,通过照明或与全反式视网膜重建,很难形成激活的双稳态视蛋白的均匀种群。这里,我们展示了一种非自然的视网膜类似物,全反式视网膜6.11(ATR6.11),可以用无脊椎动物双稳态视蛋白重组,跳跃蜘蛛视紫质-1(JSR1)。生化活性测定证明ATR6.11作为JSR1激动剂起作用。ATR6.11结合还能够在JSR1和信号配偶体之间形成复合物。我们的发现证明了视网膜类似物用于双稳态视蛋白的生物物理表征的实用性,这将加深我们对动物光感知的理解。
    Animal vision depends on opsins, a category of G protein-coupled receptor (GPCR) that achieves light sensitivity by covalent attachment to retinal. Typically binding as an inverse agonist, 11-cis retinal photoisomerizes to the all-trans isomer and activates the receptor, initiating downstream signaling cascades. Retinal bound to bistable opsins isomerizes back to the 11-cis state after absorption of a second photon, inactivating the receptor. Bistable opsins are essential for invertebrate vision and nonvisual light perception across the animal kingdom. While crystal structures are available for bistable opsins in the inactive state, it has proven difficult to form homogeneous populations of activated bistable opsins either via illumination or reconstitution with all-trans retinal. Here, we show that a nonnatural retinal analog, all-trans retinal 6.11 (ATR6.11), can be reconstituted with the invertebrate bistable opsin, Jumping Spider Rhodopsin-1 (JSR1). Biochemical activity assays demonstrate that ATR6.11 functions as a JSR1 agonist. ATR6.11 binding also enables complex formation between JSR1 and signaling partners. Our findings demonstrate the utility of retinal analogs for biophysical characterization of bistable opsins, which will deepen our understanding of light perception in animals.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    视蛋白视觉颜料捕获光子会将其11-顺式视黄醛(11cRAL)发色团异构化为全反式视黄醛(atRAL),随后分离。为了恢复光敏感度,无配体的apo-opsin与另一个11cRAL结合,形成一种新的视觉颜料。两种酶途径为光感受器提供发色团。视网膜色素上皮细胞的典型视觉周期以低速率供应11cRAL。Müller细胞中的光视觉周期以高速率为视锥提供11-顺式视黄醇(11cROL)发色团前体。虽然棒只能使用11cRAL再生视紫红质,锥体可以使用11cRAL或11cROL再生锥体视觉颜料。我们在斑马鱼视网膜中进行了筛选,并将ZCRDH鉴定为将视锥内段中的11cROL转化为11cRAL的候选酶。对Zcrdh突变斑马鱼的眼睛进行的视黄醇分析显示11cRAL水平降低,11cROL水平升高,提示11cROL转化为11cRAL受损。通过显微分光光度法,分离的Zcrdh突变体视锥细胞失去了从11cROL再生视觉色素的能力。因此,ZCRDH具有锥11cROL脱氢酶的所有预测性质。与ZCRDH最相似的人蛋白是RDH12。通过免疫细胞化学,ZCRDH大量存在于圆锥内段,与报告的RDH12分布相似。最后,RDH12是唯一表现出11cROL-氧化酶催化活性的哺乳动物候选蛋白。这些观察结果表明,哺乳动物中的RDH12是ZCRDH的功能直系同源物,允许锥体,但不是杆,从Müller细胞提供的11cROL再生视觉色素。这种能力允许视锥细胞在日光暴露的视网膜中逃避与视杆竞争的视觉发色团。
    Capture of a photon by an opsin visual pigment isomerizes its 11-cis-retinaldehyde (11cRAL) chromophore to all-trans-retinaldehyde (atRAL), which subsequently dissociates. To restore light sensitivity, the unliganded apo-opsin combines with another 11cRAL to make a new visual pigment. Two enzyme pathways supply chromophore to photoreceptors. The canonical visual cycle in retinal pigment epithelial cells supplies 11cRAL at low rates. The photic visual cycle in Müller cells supplies cones with 11-cis-retinol (11cROL) chromophore precursor at high rates. Although rods can only use 11cRAL to regenerate rhodopsin, cones can use 11cRAL or 11cROL to regenerate cone visual pigments. We performed a screen in zebrafish retinas and identified ZCRDH as a candidate for the enzyme that converts 11cROL to 11cRAL in cone inner segments. Retinoid analysis of eyes from Zcrdh-mutant zebrafish showed reduced 11cRAL and increased 11cROL levels, suggesting impaired conversion of 11cROL to 11cRAL. By microspectrophotometry, isolated Zcrdh-mutant cones lost the capacity to regenerate visual pigments from 11cROL. ZCRDH therefore possesses all predicted properties of the cone 11cROL dehydrogenase. The human protein most similar to ZCRDH is RDH12. By immunocytochemistry, ZCRDH was abundantly present in cone inner segments, similar to the reported distribution of RDH12. Finally, RDH12 was the only mammalian candidate protein to exhibit 11cROL-oxidase catalytic activity. These observations suggest that RDH12 in mammals is the functional ortholog of ZCRDH, which allows cones, but not rods, to regenerate visual pigments from 11cROL provided by Müller cells. This capacity permits cones to escape competition from rods for visual chromophore in daylight-exposed retinas.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    光检测会破坏视觉色素。它的再生,光灵敏度的恢复所必需的,是通过视觉周期完成的。通过光活化的视觉色素释放全反式视黄醛并将其还原成全反式视黄醇包括视觉周期的第一步。在这项研究中,我们确定了人视杆和视锥光感受器中全反式视黄醇形成的动力学。
    从人类尸体眼(年龄21至90岁)的视网膜中分离出单个活杆和视锥光感受器。全反式视黄醇的形成通过成像其外段荧光(激发,360nm;发射,>420nm)。通过测量340和380nm激发的荧光来确定释放的全反式视黄醛向全反式视黄醇的转化程度。用从猕猴视网膜分离的光感受器重复测量。实验在37℃下进行。
    我们发现,光活化色素释放的80%至90%的全反式视黄醛转化为全反式视黄醇,在人类视杆中的速率常数为0.24至0.55min-1,在人类视锥中的速率常数为1.8min-1。在M.fascicularis杆和锥中,速率常数分别为0.38±0.08min-1和4.0±1.1min-1。这些动力学比在其他脊椎动物中测量的动力学快几倍。光感受器间类视黄醇结合蛋白有助于从人杆中去除全反式视黄醇。
    人类光感受器的视觉周期的第一步比其他脊椎动物快几倍,并且与人类视觉系统表现出的光敏性的快速恢复相一致。
    UNASSIGNED: Light detection destroys the visual pigment. Its regeneration, necessary for the recovery of light sensitivity, is accomplished through the visual cycle. Release of all-trans retinal by the light-activated visual pigment and its reduction to all-trans retinol comprise the first steps of the visual cycle. In this study, we determined the kinetics of all-trans retinol formation in human rod and cone photoreceptors.
    UNASSIGNED: Single living rod and cone photoreceptors were isolated from the retinas of human cadaver eyes (ages 21 to 90 years). Formation of all-trans retinol was measured by imaging its outer segment fluorescence (excitation, 360 nm; emission, >420 nm). The extent of conversion of released all-trans retinal to all-trans retinol was determined by measuring the fluorescence excited by 340 and 380 nm. Measurements were repeated with photoreceptors isolated from Macaca fascicularis retinas. Experiments were carried out at 37°C.
    UNASSIGNED: We found that ∼80% to 90% of all-trans retinal released by the light-activated pigment is converted to all-trans retinol, with a rate constant of 0.24 to 0.55 min-1 in human rods and ∼1.8 min-1 in human cones. In M. fascicularis rods and cones, the rate constants were 0.38 ± 0.08 min-1 and 4.0 ± 1.1 min-1, respectively. These kinetics are several times faster than those measured in other vertebrates. Interphotoreceptor retinoid-binding protein facilitated the removal of all-trans retinol from human rods.
    UNASSIGNED: The first steps of the visual cycle in human photoreceptors are several times faster than in other vertebrates and in line with the rapid recovery of light sensitivity exhibited by the human visual system.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    视网膜希夫碱的光诱导全反式至13顺式异构化代表了细菌视紫红质(BR)反应循环中的超快第一步。广泛的实验和理论工作已经通过与基态的锥形相交解决了激发态动力学和异构化。在相互矛盾的分子图片中,激发态势能表面已被建模为与基态相交的纯S[公式:见文本]状态,或在涉及S[公式:见文本]和S[公式:见文本]状态的3状态图片中。这里,光激发系统通过两个交叉区域返回到基态。希夫碱在S[公式:见正文]和S[公式:见正文]状态下的电偶极矩差异很大,并且,因此,它的测量允许评估激发态电势的特征。我们应用超快太赫兹(THz)Stark光谱的方法来测量野生型BR和BRD85T突变体在电子激发下的电偶极子变化。电子吸收的完全可逆的瞬态展宽和光谱偏移是由几兆伏/厘米的皮秒THz场引起的,并由120fs光学探测脉冲映射。对于两种BR变体,我们推导出5的中等电偶极子变化[公式:见正文]1德拜,明显小于激发态的纯S[公式:见文字]-字符的预测值。相比之下,S[公式:参见正文]-在探测脉冲持续时间内激发态动力学的混合和时间平均给出了与实验一致的偶极变化。我们的结果支持3状态模型中由S[公式:见文本]和S[公式:见文本]状态相互作用控制的电子和核动力学图。
    The photoinduced all-trans to 13-cis isomerization of the retinal Schiff base represents the ultrafast first step in the reaction cycle of bacteriorhodopsin (BR). Extensive experimental and theoretical work has addressed excited-state dynamics and isomerization via a conical intersection with the ground state. In conflicting molecular pictures, the excited state potential energy surface has been modeled as a pure S[Formula: see text] state that intersects with the ground state, or in a 3-state picture involving the S[Formula: see text] and S[Formula: see text] states. Here, the photoexcited system passes two crossing regions to return to the ground state. The electric dipole moment of the Schiff base in the S[Formula: see text] and S[Formula: see text] state differs strongly and, thus, its measurement allows for assessing the character of the excited-state potential. We apply the method of ultrafast terahertz (THz) Stark spectroscopy to measure electric dipole changes of wild-type BR and a BR D85T mutant upon electronic excitation. A fully reversible transient broadening and spectral shift of electronic absorption is induced by a picosecond THz field of several megavolts/cm and mapped by a 120-fs optical probe pulse. For both BR variants, we derive a moderate electric dipole change of 5 [Formula: see text] 1 Debye, which is markedly smaller than predicted for a neat S[Formula: see text]-character of the excited state. In contrast, S[Formula: see text]-admixture and temporal averaging of excited-state dynamics over the probe pulse duration gives a dipole change in line with experiment. Our results support a picture of electronic and nuclear dynamics governed by the interaction of S[Formula: see text] and S[Formula: see text] states in a 3-state model.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    光异构化是微生物和动物视紫红质中的关键光化学反应。众所周知,这种光异构化是高度选择性的;全反式为13-顺式,微生物和动物视紫红质中的11顺式到全反式形式,分别。然而,最近在微生物视紫红质中发现了不寻常的光异构化途径。在酶视紫红质NeoR中,全反式发色团被异构化为7-顺式形式,在室温下是稳定的。虽然,7-cis形式是由视网膜照明产生的,从未报道过全反式视黄醛的质子化席夫碱在溶液中形成7-顺式形式。目前通过羟胺反应制备的视网膜肟的HPLC分析表明,在标准HPLC条件下,全反式和7-顺式形式不能与顺式峰分离。而通过反峰的分析是可能的。因此,我们发现通过溶液中全反式发色团的光反应形成7-顺式形式,无论希夫碱的质子化状态如何。在溶液中全反式质子化视黄醛席夫碱的光吸收下,激发态弛豫伴随着双键异构化,生产7-cis,9-cis,11-cis,或13顺式形式。相比之下,在许多微生物视紫红质中,特定的发色团-蛋白质相互作用强制选择性异构化为13-顺式形式,而是在NeoR进入7-cis.
    Photoisomerization is a key photochemical reaction in microbial and animal rhodopsins. It is well established that such photoisomerization is highly selective; all-trans to 13-cis, and 11-cis to all-trans forms in microbial and animal rhodopsins, respectively. Nevertheless, unusual photoisomerization pathways have been discovered recently in microbial rhodopsins. In an enzymerhodopsin NeoR, the all-trans chromophore is isomerized into the 7-cis form exclusively, which is stable at room temperature. Although, the 7-cis form is produced by illumination of retinal, formation of the 7-cis form was never reported for a protonated Schiff base of all-trans retinal in solution. Present HPLC analysis of retinal oximes prepared by hydroxylamine reaction revealed that all-trans and 7-cis forms cannot be separated from the syn peaks under the standard HPLC conditions, while it is possible by the analysis of the anti-peaks. Consequently, we found formation of the 7-cis form by the photoreaction of all-trans chromophore in solution, regardless of the protonation state of the Schiff base. Upon light absorption of all-trans protonated retinal Schiff base in solution, excited-state relaxation accompanies double-bond isomerization, producing 7-cis, 9-cis, 11-cis, or 13-cis form. In contrast, specific chromophore-protein interaction enforces selective isomerization into the 13-cis form in many microbial rhodopsins, but into 7-cis in NeoR.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    采用RPE65作为类视黄醇异构酶的规范视觉周期再生11-顺式视网膜以支持杆和锥介导的视觉。RPE65的突变与Leber先天性黑蒙(LCA)有关,LCA会导致杆状和锥形光感受器退化以及早期受影响患者的视力丧失。已知暗饲养Rpe65-/-小鼠会形成异视紫红质,该异视紫红质采用9-顺式视黄醛作为光敏发色团。调节9-顺式-视网膜合成的机制和内源性9-顺式-视网膜在视锥存活和功能中的作用仍在很大程度上未知。在本研究中,我们发现脂肪酸转运蛋白-4(FATP4)的消融,由RPE65催化的11-顺式视黄醇合成的负调节剂,增加了9-顺式视黄醛的形成,但不是11-顺式视网膜,在RPE65-nullrd12小鼠的两种性别中均具有光依赖性。rd12和rd12;Fatp4-/-小鼠眼睛中含有大量的全反式视黄酯,表现出可比的暗视视力和杆变性。然而,在rd12的上级视网膜中存活的M-和S-视蛋白的表达水平以及M-和S-视锥的数量;Fatp4-/-小鼠比年龄匹配的rd12小鼠高至少2倍。此外,FATP4缺乏显著缩短了亮视觉b波隐含时间,改善了M-视锥视觉功能,大大减慢了rd12小鼠视锥变性的进展,而具有野生型Rpe65等位基因的小鼠中的FATP4缺乏既不诱导9-顺式视网膜形成也不影响视锥存活和功能。这些结果确定FATP4是9-顺式视网膜合成的新调节剂,这是一种“视锥向”发色团,支持视锥在有缺陷的RPE65视网膜中的存活和功能。重要性声明Isorhodopsin,它采用9-顺式视网膜作为光敏发色团,已知在表现出早期视锥退化的LCA的暗饲养Rpe65-/-小鼠模型中支持视杆的存活和功能。调节9-顺式视网膜形成的机制和9-顺式视网膜在视锥细胞存活中的作用仍然未知。这里,我们确定FATP4是RPE65-null小鼠中9-顺式-视网膜合成的一种新的负调节因子.我们进一步发现,增加9-顺式视网膜合成并不影响杆功能和变性,但它显著提高了缺乏RPE65和FATP4的小鼠的视锥细胞存活和功能。我们的发现表明,9-顺式视网膜作为“锥向”发色团,提供9-顺式视网膜和FATP4作为重要的治疗靶标,以减轻与RPE65突变相关的LCA中的视锥退化和白天色觉丧失。
    The canonical visual cycle employing RPE65 as the retinoid isomerase regenerates 11-cis-retinal to support both rod- and cone-mediated vision. Mutations of RPE65 are associated with Leber congenital amaurosis that results in rod and cone photoreceptor degeneration and vision loss of affected patients at an early age. Dark-reared Rpe65-/- mouse has been known to form isorhodopsin that employs 9-cis-retinal as the photosensitive chromophore. The mechanism regulating 9-cis-retinal synthesis and the role of the endogenous 9-cis-retinal in cone survival and function remain largely unknown. In this study, we found that ablation of fatty acid transport protein-4 (FATP4), a negative regulator of 11-cis-retinol synthesis catalyzed by RPE65, increased the formation of 9-cis-retinal, but not 11-cis-retinal, in a light-independent mechanism in both sexes of RPE65-null rd12 mice. Both rd12 and rd12;Fatp4-/- mice contained a massive amount of all-trans-retinyl esters in the eyes, exhibiting comparable scotopic vision and rod degeneration. However, expression levels of M- and S-opsins as well as numbers of M- and S-cones surviving in the superior retinas of rd12;Fatp4-/ - mice were at least twofold greater than those in age-matched rd12 mice. Moreover, FATP4 deficiency significantly shortened photopic b-wave implicit time, improved M-cone visual function, and substantially deaccelerated the progression of cone degeneration in rd12 mice, whereas FATP4 deficiency in mice with wild-type Rpe65 alleles neither induced 9-cis-retinal formation nor influenced cone survival and function. These results identify FATP4 as a new regulator of synthesis of 9-cis-retinal, which is a \"cone-tropic\" chromophore supporting cone survival and function in the retinas with defective RPE65.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    当专门的蛋白质(视蛋白)通过其共价键合的维生素A衍生物11顺式视黄醛(11顺式-RAL)感知光子时,视觉开始于视网膜光感受器。非酶醛与氨基的反应缺乏特异性,反应产物可能引发细胞损伤。然而,11cis-RAL合成减少导致光感受器死亡,提示需要小心控制视网膜细胞对11cis-RAL的处理.这种观点侧重于类维生素A的合成,它们在成人视网膜中的控制,以及它们在视网膜发育过程中的作用。它还探讨了9cis维生素A衍生物在调节类维生素A合成中的潜在重要性及其对光感受器发育和存活的影响。此外,讨论了最近的进展,表明类维生素A合成调节视锥细胞活力的关键性质。
    Vision starts in retinal photoreceptors when specialized proteins (opsins) sense photons via their covalently bonded vitamin A derivative 11cis retinaldehyde (11cis-RAL). The reaction of non-enzymatic aldehydes with amino groups lacks specificity, and the reaction products may trigger cell damage. However, the reduced synthesis of 11cis-RAL results in photoreceptor demise and suggests the need for careful control over 11cis-RAL handling by retinal cells. This perspective focuses on retinoid(s) synthesis, their control in the adult retina, and their role during retina development. It also explores the potential importance of 9cis vitamin A derivatives in regulating retinoid synthesis and their impact on photoreceptor development and survival. Additionally, recent advancements suggesting the pivotal nature of retinoid synthesis regulation for cone cell viability are discussed.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号