Retinal Bipolar Cells

  • 文章类型: Journal Article
    人类和非人类灵长类动物的视网膜中央凹对于高敏锐度和彩色视觉至关重要。在中央凹内部存在专门的电路,其中来自单个圆锥感光器的信号大部分被传送到一个ON和一个OFF型侏儒双极细胞(MBC)。依次连接到单个ON或OFF侏儒神经节细胞(MGC),分别。恢复中央凹视力不仅需要更换感光器,还需要与存活的ON和OFFMBC和MGCs进行适当的重新连接。然而,我们目前对视锥丢失对剩余中央凹途径的影响的理解是有限的。因此,我们使用连续的面框电子显微镜来确定光凝后急性光感受器丢失几个月后成年猕猴的可塑性和该途径的潜在重塑程度。我们重建了锥体损失区域内和附近的MBC结构和连通性。我们发现暗点内的MBC树突缩回,未能到达存活的视锥以形成新的连接。然而,在暗点边界处存活的锥体和ON和OFF的MBC树突都表现出重塑,这表明这些神经元可以在成熟时表现出可塑性和重新布线。病变后六个月,断开的MBC显然失去了与其突触后伙伴的输出带状突触,而大多数ONMBCs保持轴突带状数,在锥度损失后,在开和关小型电路重塑中提出了不同的定时或程度。我们的发现提出了在恢复中央凹视力时对细胞置换方法进行重新布线的考虑。
    The retinal fovea in human and nonhuman primates is essential for high acuity and color vision. Within the fovea lies specialized circuitry in which signals from a single cone photoreceptor are largely conveyed to one ON and one OFF type midget bipolar cell (MBC), which in turn connect to a single ON or OFF midget ganglion cell (MGC), respectively. Restoring foveal vision requires not only photoreceptor replacement but also appropriate reconnection with surviving ON and OFF MBCs and MGCs. However, our current understanding of the effects of cone loss on the remaining foveal midget pathway is limited. We thus used serial block-face electron microscopy to determine the degree of plasticity and potential remodeling of this pathway in adult Macaca fascicularis several months after acute photoreceptor loss upon photocoagulation. We reconstructed MBC structure and connectivity within and adjacent to the region of cone loss. We found that MBC dendrites within the scotoma retracted and failed to reach surviving cones to form new connections. However, both surviving cones and ON and OFF MBC dendrites at the scotoma border exhibited remodeling, suggesting that these neurons can demonstrate plasticity and rewiring at maturity. At six months postlesion, disconnected OFF MBCs clearly lost output ribbon synapses with their postsynaptic partners, whereas the majority of ON MBCs maintained their axonal ribbon numbers, suggesting differential timing or extent in ON and OFF midget circuit remodeling after cone loss. Our findings raise rewiring considerations for cell replacement approaches in the restoration of foveal vision.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    启动人类色觉的神经通路始于中央凹视网膜的复杂突触网络,其中信号起源于长(L),中间(M),和短(S)波长敏感的锥形感光体类型通过拮抗相互作用进行比较,被称为反对。在非人灵长类动物中,很好地建立了两个锥形对手途径:一个L与与侏儒神经节细胞类型相关的M锥电路,通常被称为红绿通道,和Svs.L+M锥形电路与小的双分层神经节细胞类型有关,通常被称为蓝黄色途径。这些途径在人类视觉中与三基色空间中的基本方向相对应,为更高级别的颜色处理提供并行输入。然而,将非人灵长类视网膜中的视锥对立性与人类视觉中的颜色机制联系起来已被证明特别困难。这里,我们将连接体重建应用于人类中央凹视网膜,以追踪从S-ON(或“蓝锥”)双极细胞到小的双分层细胞和两种其他神经节细胞类型的平行兴奋性突触输出:大的双分层神经节细胞和ON-midget神经节细胞亚群,其突触连接表明在色觉中具有重要而独特的作用。这两种神经节细胞类型对S-ON和L与M对手侏儒双极细胞,从而定义了中央凹视网膜中合并红绿蓝黄电路的兴奋性通路,在人类视觉的第一阶段具有三色锥对立性的潜力。
    The neural pathways that start human color vision begin in the complex synaptic network of the foveal retina where signals originating in long (L), middle (M), and short (S) wavelength-sensitive cone photoreceptor types are compared through antagonistic interactions, referred to as opponency. In nonhuman primates, two cone opponent pathways are well established: an L vs. M cone circuit linked to the midget ganglion cell type, often called the red-green pathway, and an S vs. L + M cone circuit linked to the small bistratified ganglion cell type, often called the blue-yellow pathway. These pathways have been taken to correspond in human vision to cardinal directions in a trichromatic color space, providing the parallel inputs to higher-level color processing. Yet linking cone opponency in the nonhuman primate retina to color mechanisms in human vision has proven particularly difficult. Here, we apply connectomic reconstruction to the human foveal retina to trace parallel excitatory synaptic outputs from the S-ON (or \"blue-cone\") bipolar cell to the small bistratified cell and two additional ganglion cell types: a large bistratified ganglion cell and a subpopulation of ON-midget ganglion cells, whose synaptic connections suggest a significant and unique role in color vision. These two ganglion cell types are postsynaptic to both S-ON and L vs. M opponent midget bipolar cells and thus define excitatory pathways in the foveal retina that merge the cardinal red-green and blue-yellow circuits, with the potential for trichromatic cone opponency at the first stage of human vision.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    在大多数鸟类视网膜中,双锥(由主要和附属成员组成)数量超过其他感光器类型,并与各种功能相关联,例如编码亮度,感应偏振光,和磁接收。然而,他们的下游电路知之甚少,尤其是鸟类。分析物种差异对于了解由生态适应驱动的电路变化很重要。我们比较了夜间迁徙的欧洲知更鸟和非迁徙鸡的双视锥细胞及其突触后双极细胞的超微结构。我们在欧洲知更鸟视网膜中发现了四种以前未知的双极细胞类型,包括主要连接到一个主要成员的侏儒样双极细胞。下游神经节细胞显示出完整的侏儒样回路,类似于外周灵长类视网膜中的回路。此外,我们识别从附件成员的特定子集传输信息的选择性电路。我们的数据强调了双锥到双极细胞连接的物种特异性差异,可能反映生态适应。
    In most avian retinas, double cones (consisting of a principal and accessory member) outnumber other photoreceptor types and have been associated with various functions, such as encoding luminance, sensing polarized light, and magnetoreception. However, their down-stream circuitry is poorly understood, particularly across bird species. Analysing species differences is important to understand changes in circuitry driven by ecological adaptations. We compare the ultrastructure of double cones and their postsynaptic bipolar cells between a night-migratory European robin and non-migratory chicken. We discover four previously unidentified bipolar cell types in the European robin retina, including midget-like bipolar cells mainly connected to one principal member. A downstream ganglion cell reveals a complete midget-like circuit similar to a circuit in the peripheral primate retina. Additionally, we identify a selective circuit transmitting information from a specific subset of accessory members. Our data highlight species-specific differences in double cone to bipolar cell connectivity, potentially reflecting ecological adaptations.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    在脊椎动物的中枢神经系统中,谷氨酸作为主要的兴奋性神经递质。然而,在视网膜上,从光感受器释放的谷氨酸通过谷氨酸门控的氯离子电流在突触后双极细胞中引起超极化,这似乎自相矛盾。我们的研究表明,这种电流是由两种兴奋性谷氨酸转运体调节的,EAAT5b和EAAT7。在斑马鱼的视网膜上,这些转运蛋白位于ON双极细胞的树突状尖端,并与所有四种类型的视锥细胞相互作用。这些转运蛋白的缺失导致ON-双极细胞反应的减少,eaat5b突变体比eaat5b/eaat7双突变体受影响较小,也表现出改变的响应动力学。生物物理研究确定EAAT7是具有主要阴离子电导的活性谷氨酸转运体。我们的研究首次证明突触后谷氨酸转运体直接参与中枢神经系统突触的抑制性直接突触传递。
    In the central nervous system of vertebrates, glutamate serves as the primary excitatory neurotransmitter. However, in the retina, glutamate released from photoreceptors causes hyperpolarization in post-synaptic ON-bipolar cells through a glutamate-gated chloride current, which seems paradoxical. Our research reveals that this current is modulated by two excitatory glutamate transporters, EAAT5b and EAAT7. In the zebrafish retina, these transporters are located at the dendritic tips of ON-bipolar cells and interact with all four types of cone photoreceptors. The absence of these transporters leads to a decrease in ON-bipolar cell responses, with eaat5b mutants being less severely affected than eaat5b/eaat7 double mutants, which also exhibit altered response kinetics. Biophysical investigations establish that EAAT7 is an active glutamate transporter with a predominant anion conductance. Our study is the first to demonstrate the direct involvement of post-synaptic glutamate transporters in inhibitory direct synaptic transmission at a central nervous system synapse.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    在视网膜色素变性(RP),杆状和锥形光感受器退化,剥夺下游神经元的光敏输入,导致视力障碍或失明。虽然下游神经元存活,一些经历形态和生理重塑。双极细胞(BCs)连接光感受器,感觉到光,视网膜神经节细胞(RGC),向大脑发送信息。虽然光感受器丢失会破坏BCs的输入突触,BC输出突触是否重塑仍然未知。在这里,我们报告说,由于电压门控Ca2通道的丢失,在两性的RP小鼠模型中,BCs的突触输出急剧下降。重塑降低了突触输出对重复光遗传刺激的可靠性,导致RGC在高刺激频率下点火失败。幸运的是,通过抑制视黄酸受体(RAR)可以逆转BCs的功能重塑。靶向BCs的RAR抑制剂提供了一种新的治疗机会,可以减轻重塑对存活的光感受器或视力恢复工具引发的信号的有害影响。意义声明光感受器退行性疾病,如视网膜色素变性(RP)和年龄相关性黄斑变性(AMD)导致视力障碍或失明。存活的光感受器或人工视觉恢复技术介导的视觉,依赖于双极细胞保持正常功能,尽管光感受器死亡。我们发现在两种RP动物模型中,由于电压门控钙电流降低,杆状和锥形双极细胞的突触传递严重受损,防止突触后无长突细胞和视网膜神经节细胞正确接收和编码视觉信息。我们发现视黄酸受体的抑制剂可恢复双极细胞的钙电流和突触释放。关于双极细胞的这些发现揭示了失明的新功能缺陷和潜在的治疗重要解决方案。
    In retinitis pigmentosa (RP), rod and cone photoreceptors degenerate, depriving downstream neurons of light-sensitive input, leading to vision impairment or blindness. Although downstream neurons survive, some undergo morphological and physiological remodeling. Bipolar cells (BCs) link photoreceptors, which sense light, to retinal ganglion cells (RGCs), which send information to the brain. While photoreceptor loss disrupts input synapses to BCs, whether BC output synapses remodel has remained unknown. Here we report that synaptic output from BCs plummets in RP mouse models of both sexes owing to loss of voltage-gated Ca2+ channels. Remodeling reduces the reliability of synaptic output to repeated optogenetic stimuli, causing RGC firing to fail at high-stimulus frequencies. Fortunately, functional remodeling of BCs can be reversed by inhibiting the retinoic acid receptor (RAR). RAR inhibitors targeted to BCs present a new therapeutic opportunity for mitigating detrimental effects of remodeling on signals initiated either by surviving photoreceptors or by vision-restoring tools.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    已知与年龄相关的神经元适应有助于维持功能。这项研究旨在检查年轻和中年C57BL/6J和Thy1-YFPh小鼠的总体年龄相关的体内视网膜功能适应(使用视网膜电图),并将其与体内视网膜结构(使用光学相干断层扫描)联系起来。Thy1-YFPh小鼠的视网膜电图反应通常大于C57BL/6J小鼠,Thy1-YFPh小鼠体内视网膜层厚度相似,但内部/外部光感受器节段更长。相对于3个月大的小鼠,12月龄小鼠的光感受器功能降低(C57BL/6J84.0±2.5%;Thy1-YFPh80.2±5.2%)和双极细胞(C57BL/6J75.6±2.3%;Thy1-YFPh68.1±5.5%)。随着年龄的增长,神经节细胞功能相对保留(C57BL/6J79.7±3.7%;Thy1-YFPh91.7±5.0%),这与b波(双极细胞)对光的敏感性增加有关。神经节细胞功能与b波振幅和灵敏度相关。这项研究表明,有正常的与年龄相关的适应来保持功能输出。不同的小鼠品系可能具有与年龄相关的适应能力,因此在检查与年龄相关的损伤易感性时应予以考虑。
    Age-related neuronal adaptations are known to help maintain function. This study aims to examine gross age-related in vivo retinal functional adaptations (using electroretinography) in young and middle aged C57BL/6J and Thy1-YFPh mice and to relate this to in vivo retinal structure (using optical coherence tomography). Electroretinography responses were generally larger in Thy1-YFPh mice than in C57BL/6J mice, with similar in vivo retinal layer thicknesses except for longer inner/outer photoreceptor segment in Thy1-YFPh mice. Relative to 3-month-old mice, 12-month-old mice showed reduced photoreceptor (C57BL/6J 84.0±2.5 %; Thy1-YFPh 80.2±5.2 %) and bipolar cell (C57BL/6J 75.6±2.3 %; Thy1-YFPh 68.1±5.5 %) function. There was relative preservation of ganglion cell function (C57BL/6J 79.7±3.7 %; Thy1-YFPh 91.7±5.0 %) with age, which was associated with increased b-wave (bipolar cell) sensitivities to light. Ganglion cell function was correlated with both b-wave amplitude and sensitivity. This study shows that there are normal age-related adaptations to preserve functional output. Different mouse strains may have varied age-related adaptation capacity and should be taken into consideration when examining age-related susceptibility to injury.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    视网膜假体是恢复视网膜色素变性和年龄相关性黄斑变性患者视力丧失的主要治疗策略之一。许多工作已经描述了响应电刺激的视网膜神经节细胞(RGC)的尖峰模式,但较少的工作是检查由电刺激激活的潜在视网膜电路来驱动这些反应。令人惊讶的是,对抑制在产生电反应中的作用知之甚少,或者在变性过程中抑制可能如何改变。在rd10和wt视网膜的视网膜下电刺激期间使用全细胞电压钳记录,我们发现电诱发突触输入在ON和OFFRGC群体之间有所不同,ON细胞主要接受激发,OFF细胞主要接受抑制和很少的激发。我们发现OFF双极细胞的抑制限制了OFFRGC的兴奋,并且OFF通路中的大部分突触前和突触后抑制都来自于甘氨酸能的无能细胞,和ON途径的刺激有助于RGC的抑制性输入。我们还表明,这种在OFF通路中的突触前抑制在rd10视网膜中更大,与野生型(wt)视网膜相比。意义陈述电路处理的变化可能对色素性视网膜炎患者的视力恢复产生有害影响。先前的研究集中在前馈兴奋驱动,而不是包括正常视网膜功能的兴奋和抑制之间的相互作用。这项研究表明,视网膜神经节细胞在三个与其解剖结构相对应的广泛功能组中对电刺激作出反应。我们表明,虽然退化和wt视网膜显示相同的三组,变性视网膜的OFF通路突触前抑制量增加,限制了它们对OFF神经节细胞的兴奋性输出。
    Retinal prosthetics are one of the leading therapeutic strategies to restore lost vision in patients with retinitis pigmentosa and age-related macular degeneration. Much work has described patterns of spiking in retinal ganglion cells (RGCs) in response to electrical stimulation, but less work has examined the underlying retinal circuitry that is activated by electrical stimulation to drive these responses. Surprisingly, little is known about the role of inhibition in generating electrical responses or how inhibition might be altered during degeneration. Using whole-cell voltage-clamp recordings during subretinal electrical stimulation in the rd10 and wild-type (wt) retina, we found electrically evoked synaptic inputs differed between ON and OFF RGC populations, with ON cells receiving mostly excitation and OFF cells receiving mostly inhibition and very little excitation. We found that the inhibition of OFF bipolar cells limits excitation in OFF RGCs, and a majority of both pre- and postsynaptic inhibition in the OFF pathway arises from glycinergic amacrine cells, and the stimulation of the ON pathway contributes to inhibitory inputs to the RGC. We also show that this presynaptic inhibition in the OFF pathway is greater in the rd10 retina, compared with that in the wt retina.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    β-突触核蛋白,突触核蛋白家族的一员,在神经系统中经常与α-突触核蛋白共表达,其中它用于抑制神经退行性疾病中α-突触核蛋白的异常聚集。除了它在病理条件下的作用,β-突触核蛋白独立于α-突触核蛋白发挥各种功能。在我们的调查中,我们发现,与α-突触核蛋白相比,β-突触核蛋白在小鼠视网膜中的表达范围更广.这种广泛的模式暗示了它在视网膜中的潜在意义。通过光和电子显微镜免疫细胞化学的详细检查,我们确定了从感光细胞的内段(IS)和外段(OS)到神经节细胞层(GCL)的β-突触核蛋白表达。我们的发现揭示了独特的特征,包括视锥细胞的β-突触核蛋白免疫反应性IS和OS,锥蒂中的表达高于杆状球,水平细胞中不存在,在锥形双极树突和胞体中的有限表达,在锥形双极端子中的表达更高,存在于大多数无长突细胞中,并且在GCL中几乎大多数体细胞中表达,而内在光敏性视网膜神经节细胞(ipRGC)过程中不存在。值得注意的是,所有胆碱能无长突细胞表达高β-但不表达α-突触核蛋白,而多巴胺能无长突细胞仅表达α-突触核蛋白。这些独特的表达模式为进一步探索β-突触核蛋白的功能及其在视网膜内突触核蛋白病理学中的潜在作用提供了有价值的见解。
    β-synuclein, a member of the synuclein family, is frequently co-expressed with α-synuclein in the neural system, where it serves to inhibit abnormal aggregation of α-synuclein in neurodegenerative diseases. Beyond its role in pathological conditions, β-synuclein plays various functions independently of α-synuclein. In our investigation, we discovered a broader expression of β-synuclein in the mouse retina compared to α-synuclein. This widespread pattern implies its potential significance in the retina. Through detailed examination via light- and electron-microscopic immunocytochemistry, we identified β-synuclein expression from the inner segment (IS) and outer segment (OS) of photoreceptor cells to the ganglion cell layer (GCL). Our findings unveiled unique features, including β-synuclein immunoreactive IS and OS of cones, higher expression in cone pedicles than in rod spherules, absence in horizontal cells, limited expression in cone bipolar dendrites and somas, higher expression in cone bipolar terminals, presence in most amacrine cells, and expression in almost majority of somas in GCL with an absence in intrinsically photosensitive retinal ganglion cell (ipRGCs) processes. Notably, all cholinergic amacrine cells express high β- but not α-synuclein, while dopaminergic amacrine cells express α-synuclein exclusively. These distinctive expression patterns offer valuable insights for further exploration into the functions of β-synuclein and its potential role in synuclein pathology within the retina.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    在瞳孔光响应(PLR)中,环境光的增加使瞳孔收缩以抑制视网膜照度的增加。这里,我们报告说,瞳孔反射弧实现了二次输入-输出转换;它感知时间对比度,以增强视网膜图像中的空间对比度并增加视力。瞳孔对比反应(PCoR)由杆光感受器通过6型双极细胞和M1神经节细胞驱动。通过M1将兴奋性输入转换为尖峰输出,将时间对比度转换为持续的瞳孔收缩。计算建模解释了PCoR如何塑造视网膜图像。瞳孔收缩可改善小鼠凝视稳定和捕食的敏锐度。人类表现出与小鼠具有相似调谐特性的PCoR,它与眼球运动相互作用,以优化视网膜编码的视觉输入的统计。因此,我们发现了主动视觉的保守组成部分,它的细胞类型特异性途径,计算机制,以及光学和行为意义。
    In the pupillary light response (PLR), increases in ambient light constrict the pupil to dampen increases in retinal illuminance. Here, we report that the pupillary reflex arc implements a second input-output transformation; it senses temporal contrast to enhance spatial contrast in the retinal image and increase visual acuity. The pupillary contrast response (PCoR) is driven by rod photoreceptors via type 6 bipolar cells and M1 ganglion cells. Temporal contrast is transformed into sustained pupil constriction by the M1\'s conversion of excitatory input into spike output. Computational modeling explains how the PCoR shapes retinal images. Pupil constriction improves acuity in gaze stabilization and predation in mice. Humans exhibit a PCoR with similar tuning properties to mice, which interacts with eye movements to optimize the statistics of the visual input for retinal encoding. Thus, we uncover a conserved component of active vision, its cell-type-specific pathway, computational mechanisms, and optical and behavioral significance.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    我们考虑了一个基本的内部视网膜连通性模型,其中双极和无长突细胞相互连接,并且两种细胞类型都投射到神经节细胞上,调节他们对大脑视觉区域的反应输出。我们推导了视网膜神经节细胞对刺激的时空反应的解析公式,考虑到无长突细胞的抑制作用。该分析揭示了网络的两个重要功能参数:(1)双极和无长突细胞之间相互作用的强度,以及(2)这些反应的特征时间尺度。这两个参数对视网膜神经节细胞对光的反应的时空特征具有深远的综合影响。该模型的有效性通过忠实再现通过刺激在神经节细胞和无长突细胞亚类上表达的兴奋性DREADDs(设计药物专门激活的设计受体)获得的药物遗传学实验结果来证实,从而将内部视网膜网络活动修改为复杂的视觉刺激,纠缠的方式。我们的数学模型使我们能够以实验上不可行的方式探索和破译这些复杂的效应,并提供视网膜动力学的新见解。
    We consider a model of basic inner retinal connectivity where bipolar and amacrine cells interconnect and both cell types project onto ganglion cells, modulating their response output to the brain visual areas. We derive an analytical formula for the spatiotemporal response of retinal ganglion cells to stimuli, taking into account the effects of amacrine cells inhibition. This analysis reveals two important functional parameters of the network: (1) the intensity of the interactions between bipolar and amacrine cells and (2) the characteristic timescale of these responses. Both parameters have a profound combined impact on the spatiotemporal features of retinal ganglion cells\' responses to light. The validity of the model is confirmed by faithfully reproducing pharmacogenetic experimental results obtained by stimulating excitatory DREADDs (Designer Receptors Exclusively Activated by Designer Drugs) expressed on ganglion cells and amacrine cells\' subclasses, thereby modifying the inner retinal network activity to visual stimuli in a complex, entangled manner. Our mathematical model allows us to explore and decipher these complex effects in a manner that would not be feasible experimentally and provides novel insights in retinal dynamics.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号