Redox control

  • 文章类型: Journal Article
    心血管疾病(CVDs)是全球死亡的主要原因。其他人和我们的研究表明,机械应力(力),包括剪切应力和循环拉伸,发生在各种病理条件下,在心血管疾病的发生和发展中起着重要作用。线粒体主要通过三磷酸腺苷(ATP)的产生来调节心脏和血管细胞的生理过程,钙通量和氧化还原控制,同时通过电子传输复合物(ETC)相关的细胞应激反应促进细胞死亡。越来越多的证据表明,机械应力引起的线粒体功能障碍在许多CVD的发病机理中起着至关重要的作用,包括心力衰竭和动脉粥样硬化。本文综述了心血管系统在生理机械应激下的线粒体功能和病理性机械应激下的线粒体功能障碍。对机械应力下线粒体功能障碍的研究可以进一步了解其潜在机制,确定潜在的治疗靶点,并帮助开发新的心血管疾病治疗方法。
    Cardiovascular diseases (CVDs) are the leading cause of mortality worldwide. Others and our studies have shown that mechanical stresses (forces) including shear stress and cyclic stretch, occur in various pathological conditions, play significant roles in the development and progression of CVDs. Mitochondria regulate the physiological processes of cardiac and vascular cells mainly through adenosine triphosphate (ATP) production, calcium flux and redox control while promote cell death through electron transport complex (ETC) related cellular stress response. Mounting evidence reveal that mechanical stress-induced mitochondrial dysfunction plays a vital role in the pathogenesis of many CVDs including heart failure and atherosclerosis. This review summarized mitochondrial functions in cardiovascular system under physiological mechanical stress and mitochondrial dysfunction under pathological mechanical stress in CVDs (graphical abstract). The study of mitochondrial dysfunction under mechanical stress can further our understanding of the underlying mechanisms, identify potential therapeutic targets, and aid the development of novel treatments of CVDs.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    本文的目的是提出在熔盐环境中缓解腐蚀的方法。结构材料的腐蚀直接取决于盐的氧化还原电位。当盐的氧化还原电位高于构成结构材料的元素的标准电位时,腐蚀发生。如果情况相反,没有观察到腐蚀。在这里,提供了一种计算熔盐理论潜力的方法,并与实验测量进行了比较。提出了通过改变盐氧化还原电位来减轻腐蚀的三种方法:(i)使用可溶性/可溶性氧化还原体系;(ii)使用恒电位法;和(iii)使用两性化合物如UCl3、TiCl2或TiCl3。在上述条件下进行浸没测试以验证该方法。
    The aim of this paper is to present methods for corrosion mitigation in molten salt environments. The corrosion of structural materials depends directly on the redox potential of the salt. When the redox potential of the salt is higher than the standard potentials of the elements constituting the structural materials, corrosion occurs. If the reverse is true, no corrosion is observed. Herein, a methodology for calculating the theoretical potential of a molten salt is provided and compared with experimental measurements. Three ways to mitigate corrosion by modifying the salt redox potential are proposed: (i) using a soluble/soluble redox system; (ii) using a potentiostatic method; and (iii) using an amphoteric compound such as UCl3, TiCl2, or TiCl3. Immersion tests were conducted under the above conditions to validate the methodology.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    半胱氨酸残基的氧化还原依赖性巯基-二硫键开关是蛋白质的重要翻译后修饰之一,可以快速控制其稳定性。活动,和蛋白质相互作用。氧化还原控制还调节四吡咯生物合成(TBS)。在氧化还原依赖性TBS酶中,5-氨基乙酰丙酸脱水酶(ALAD)以前被认为与还原剂相互作用,例如硫氧还蛋白或NADPH依赖性硫氧还蛋白还原酶C。在本报告中,我们的目的是验证ALAD的氧化还原敏感性,并在拟南芥成熟蛋白的六个半胱氨酸中鉴定氧化还原反应性半胱氨酸残基。基于在氧化和还原条件下具有单Cys和双Cys的野生型ALAD和ALAD突变体的结构建模和比较研究,我们旨在预测ALAD的二聚化和寡聚化以及二硫键形成和酶活性的关键Cys残基。Cys404Ser突变导致ALAD严重失活,ALAD的氧化还原依赖性特性严重受损,当Cys71与Cys152或Cys251同时突变时。Cys71位于ALAD的柔性N端臂中,这可以允许分子内二硫键与Cys残基在剩余的球ALAD结构的表面。因此,我们提出了Cys残基在氧化还原控制中的不同作用,催化活性和Mg2+依赖组装。
    Redox-dependent thiol-disulfide switches of cysteine residues are one of the significant posttranslational modifications of proteins to control rapidly their stability, activity, and protein interaction. Redox control also modulates the tetrapyrrole biosynthesis (TBS). Among the redox-dependent TBS enzymes, 5-aminolevulinic acid dehydratase (ALAD) was previously recognized to interact with reductants, such a thioredoxins or NADPH-dependent thioredoxin reductase C. In this report, we aim to verify the redox sensitivity of ALAD and identify the redox-reactive cysteine residues among the six cysteines of the mature protein form Arabidopsis. Based on structural modelling and comparative studies of wild-type ALAD and ALAD mutants with single and double Cys➔Ser substitutions under oxidizing and reducing conditions, we aim to predict the dimerization and oligomerisation of ALAD as well as the crucial Cys residues for disulfide bridge formation and enzyme activity. The Cys404Ser mutation led to a drastic inactivation of ALAD and redox-dependent properties of ALAD were severely impaired, when Cys71 was simultaneously mutated with Cys152 or Cys251. Cys71 is located in a flexible N-terminal arm of ALAD, which could allow intramolecular disulfide bridges with Cys residues at the surface of the remaining globule ALAD structure. As a result, we propose different roles of Cys residues for redox control, catalytic activity and Mg2+-dependent assembly.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    植物是无柄的,因此已经发展出了适应外部信号的非凡能力。这里,重点是植物细胞对新的细胞内线索作出反应的可塑性。酮类是具有有效抗氧化活性的高价值天然红色色素。在本研究中,系统水平的分析表明,番茄中酮类胡萝卜素的异源生物合成引发了一系列细胞和代谢机制,以应对植物非内源性代谢物的形成。广泛的多层次变化与,其中,(I)质体膜的重塑,其中酮类胡萝卜素的合成和储存发生;(ii)募集用于产生代谢物前体和能量的核心代谢途径;和(iii)氧化还原控制。此处显示的代谢物作为细胞过程的调节剂的参与加强了其在重塑的“中央教条”概念中所暗示的关键作用。此外,提出了代谢重编程在确保细胞稳态方面的作用。
    Plants are sessile and therefore have developed an extraordinary capacity to adapt to external signals. Here, the focus is on the plasticity of the plant cell to respond to new intracellular cues. Ketocarotenoids are high-value natural red pigments with potent antioxidant activity. In the present study, system-level analyses have revealed that the heterologous biosynthesis of ketocarotenoids in tomato initiated a series of cellular and metabolic mechanisms to cope with the formation of metabolites that are non-endogenous to the plant. The broad multilevel changes were linked to, among others, (i) the remodelling of the plastidial membrane, where the synthesis and storage of ketocarotenoids occurs; (ii) the recruiting of core metabolic pathways for the generation of metabolite precursors and energy; and (iii) redox control. The involvement of the metabolites as regulators of cellular processes shown here reinforces their pivotal role suggested in the remodelled \'central dogma\' concept. Furthermore, the role of metabolic reprogramming to ensure cellular homeostasis is proposed.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    S-Sulfocysteine(SSC),生物可利用的L-半胱氨酸衍生物(Cys),已知在用于产生新的治疗性生物学实体的中国仓鼠卵巢(CHO)细胞中被摄取和代谢。为了更深入地了解SSC的生物活性和代谢,在整个补料分批工艺中对工业相关的CHO-K1GS细胞进行了多组学研究,包括代谢组学和蛋白质组学分析结合多变量数据和途径分析。多层数据和酶分析显示细胞内SSC/谷胱甘肽混合二硫化物形成和谷氧还蛋白介导的还原,释放Cys和硫物种。增加的Cys可用性针对谷胱甘肽和牛磺酸合成,而其他Cys分解代谢途径同样受到影响,表明细胞努力维持Cys稳态和细胞功能。
    S-Sulfocysteine (SSC), a bioavailable L-cysteine derivative (Cys), is known to be taken up and metabolized in Chinese hamster ovary (CHO) cells used to produce novel therapeutic biological entities. To gain a deeper mechanistic insight into the SSC biological activity and metabolization, a multi-omics study was performed on industrially relevant CHO-K1 GS cells throughout a fed-batch process, including metabolomic and proteomic profiling combined with multivariate data and pathway analyses. Multi-layered data and enzymatical assays revealed an intracellular SSC/glutathione mixed disulfide formation and glutaredoxin-mediated reduction, releasing Cys and sulfur species. Increased Cys availability was directed towards glutathione and taurine synthesis, while other Cys catabolic pathways were likewise affected, indicating that cells strive to maintain Cys homeostasis and cellular functions.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    L-山梨糖酮脱氢酶(SNDH)是参与2-酮-L-古洛糖酸生物合成的关键酶,是工业规模生产维生素C的直接前体。阐明结构和催化机理对于改善SNDH性能至关重要。通过解析氧化葡糖酸杆菌WSH-004中SNDH的晶体结构,发现了Cys295与催化Cys296残基之间的可逆二硫键。它允许SNDH在氧化和还原状态之间切换,导致打开或关闭基材袋。此外,发现Cys296影响与SNDH的NADP+结合姿势。结合体外生化和定点诱变研究,提出了基于氧化还原的动态调节和SNDH的催化机理。此外,通过延伸底物通道获得具有增强活性的突变体。本研究不仅阐明了脱氢酶的生理调控机制,同时也为工程类似酶提供了理论依据。
    L-Sorbosone dehydrogenase (SNDH) is a key enzyme involved in the biosynthesis of 2-keto-L-gulonic acid , which is a direct precursor for the industrial scale production of vitamin C. Elucidating the structure and the catalytic mechanism is essential for improving SNDH performance. By solving the crystal structures of SNDH from Gluconobacter oxydans WSH-004, a reversible disulfide bond between Cys295 and the catalytic Cys296 residues is discovered. It allowed SNDH to switch between oxidation and reduction states, resulting in opening or closing the substrate pocket. Moreover, the Cys296 is found to affect the NADP+ binding pose with SNDH. Combining the in vitro biochemical and site-directed mutagenesis studies, the redox-based dynamic regulation and the catalytic mechanisms of SNDH are proposed. Moreover, the mutants with enhanced activity are obtained by extending substrate channels. This study not only elucidates the physiological control mechanism of the dehydrogenase, but also provides a theoretical basis for engineering similar enzymes.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    通过利用活性氧(ROS)精确操纵癌细胞死亡是战胜恶性肿瘤的有希望的策略。然而,以空间精度产生活性ROS并调节其生物学结果是相当困难的。我们成功地在癌细胞膜附近选择性地产生短寿命和脂质反应性羟基自由基(•OH),相继引起脂质过氧化和铁中毒。DiFc-K-pY,磷酸化的自组装前体,由两个分支的Fc部分组成,并与表皮生长因子受体特异性相互作用,可以原位产生膜结合的纳米纤维,并响应碱性磷酸酶在癌细胞膜上富集二茂铁部分。在酸性肿瘤微环境中,DiFc-K-pY纳米纤维通过Fenton样反应有效地将肿瘤H2O2转化为靶细胞膜周围的活性·OH,导致脂质过氧化和铁凋亡,具有良好的细胞选择性。我们的策略通过肿瘤内给药成功地防止了具有可接受的生物相容性的肿瘤进展。
    Precise manipulation of cancer cell death by harnessing reactive oxygen species (ROS) is a promising strategy to defeat malignant tumors. However, it is quite difficult to produce active ROS with spatial precision and regulate their biological outcomes. We succeed here in selectively generating short-lived and lipid-reactive hydroxyl radicals (•OH) adjacent to cancer cell membranes, successively eliciting lipid peroxidation and ferroptosis. DiFc-K-pY, a phosphorylated self-assembling precursor that consists of two branched Fc moieties and interacts specifically with epidermal growth factor receptor, can in situ produce membrane-bound nanofibers and enrich ferrocene moieties on cancer cell membranes in response to alkaline phosphatase. Within the acidic tumor microenvironment, DiFc-K-pY nanofibers efficiently convert tumoral H2O2 to active •OH around the target cell membranes via Fenton-like reactions, leading to lipid peroxidation and ferroptosis with good cellular selectivity. Our strategy successfully prevents tumor progression with acceptable biocompatibility through intratumoral administration.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    半胱氨酸生物合成对于翻译至关重要,并且代表了减少硫进入植物代谢的切入点。两种连续作用的酶丝氨酸-乙酰转移酶(SAT)和O-乙酰丝氨酸-硫醇-裂解酶催化半胱氨酸的产生并形成半胱氨酸合酶复合物(CSC),其中SAT被激活。在这里,我们表明活性SAT在烟草质体(PSA)中的表达会导致大量的半胱氨酸积累。值得注意的是,增强质体中半胱氨酸的产生完全消除了颗粒堆的形成,光合作用能力受损,并减少了PSA系的叶肉细胞中叶绿体的数量。在胞质溶胶(CSA)中表达活性SAT的转基因烟草品系积累了相当量的硫醇,但未表现出表型。为了剖析烟草质体中SAT活性增强对CSC形成的影响,我们表达了一种无酶活性的SAT,它仍然可以在烟草质体(PSI)中形成CSC。PSI线与PSA线没有区别,尽管PSI系显示质体定位的SAT活性没有增加。PSA品系和PSI品系都没有受到质体中氧化的氧化还原环境的影响,这可能是光合作用受到干扰的原因。从这些发现中,我们推断质体CSC本身的结合会触发信号级联,控制叶片中的硫同化和光合能力。
    Cysteine biosynthesis is essential for translation and represents the entry point of reduced sulfur into plant metabolism. The two consecutively acting enzymes serine acetyltransferase (SAT) and O-acetylserine-thiol-lyase catalyse cysteine production and form the cysteine synthase complex, in which SAT is activated. Here we show that tobacco (Nicotiana tabacum) expressing active SAT in plastids (referred to as PSA lines) shows substantial cysteine accumulation in plastids. Remarkably, enhanced cysteine production in plastids entirely abolished granal stack formation, impaired photosynthesis capacity, and decreased the number of chloroplasts in mesophyll cells of the PSA lines. A transgenic tobacco line expressing active SAT in the cytosol accumulated comparable amounts of thiols but displayed no phenotype. To dissect the consequences of cysteine synthase complex formation from enhanced SAT activity in tobacco plastids, we expressed an enzymatically inactive SAT that can still form the cysteine synthase complex in tobacco plastids (PSI lines). The PSI lines were indistinguishable from the PSA lines, although the PSI lines displayed no increase in plastid-localized SAT activity. Neither PSA lines nor PSI lines suffered from an oxidized redox environment in plastids that could have been causative for the disturbed photosynthesis. From these findings, we infer that the association of the plastid cysteine synthase complex itself triggers a signaling cascade controlling sulfur assimilation and photosynthetic capacity in leaves.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    作为具有代表性的一类可持续高分子材料,近年来,生物可降解聚合物引起了越来越多的兴趣。尽管相关聚合技术取得了重大进展,在开环(共)聚合中实现高顺序控制和易于处理仍然是一个核心挑战。为此,一个有希望的解决方案是开发价态可变的金属基催化剂,用于氧化还原诱导的环酯可转换聚合,环醚,环氧化物,和CO2。通过价态电子效应,在不同的催化活性状态以及休眠状态之间的转换有助于方便地形成具有期望的微观结构和各种实际性能的聚合物产物。本综述概述了用于控制聚合物合成的这种氧化还原控制的可转换策略,重点是潜在的应用和进一步研究的挑战。
    As a representative class of sustainable polymer materials, biodegradable polymers have attracted increasing interest in recent years. Despite significant advance of related polymerization techniques, realizing high sequence-control and easy-handling in ring-opening (co)polymerizations still remains a central challenge. To this end, a promising solution is the development of valence-variable metal-based catalysts for redox-induced switchable polymerization of cyclic esters, cyclic ethers, epoxides, and CO2 . Through a valence-determined electron effect, the switch between different catalytically active states as well as dormant state contributes to convenient formation of polymer products with desired microstructures and various practical performances. This redox-controlled switchable strategy for controlled synthesis of polymers is overviewed in this Review with a focus on potential applications and challenges for further studies.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    质膜转运蛋白xCT属于SLC7家族,具有介导谷氨酸和胱氨酸跨细胞质膜交换的生理作用,对氧化还原控制至关重要。xCT蛋白与辅助蛋白CD98形成异二聚体。多年来,由于在几乎所有人类癌症中都有过表达,xCT成为一个热门的药理学靶点,它们的进展依赖于胱氨酸的可用性。尽管如此,xCT生物学的几个未知方面仍然存在,需要一个合适的单蛋白实验模型,有待解决。为了这个目标,已利用重组宿主大肠杆菌过表达xCT的人同工型。在这个广泛使用和低成本的系统中,生长和蛋白质生产的优化是通过作用于细菌菌株的代谢需求来实现的。然后,His标记的蛋白质已通过Ni2螯合色谱纯化,并在蛋白脂质体中重建以进行转运活性测定。表达的蛋白质处于折叠/活性状态,从而允许功能和动力学表征。有趣的是,重组蛋白的特征符合从完整细胞中提取的天然蛋白的特征,进一步证实大肠杆菌作为表达人蛋白的宿主的适合性。这项研究为阐明xCT的其他分子方面开辟了前景,以及研究与内源性和外源性化合物的相互作用,与人类健康相关。
    The plasma membrane transporter xCT belongs to the SLC7 family and has the physiological role of mediating the exchange of glutamate and cystine across the cell plasma membrane, being crucial for redox control. The xCT protein forms a heterodimer with the ancillary protein CD98. Over the years, xCT became a hot pharmacological target due to the documented over-expression in virtually all human cancers, which rely on cystine availability for their progression. Notwithstanding, several unknown aspects of xCT biology still exist that require a suitable single protein experimental model, to be addressed. To this aim, the recombinant host Escherichia coli has been exploited to over-express the human isoform of xCT. In this widely used and low-cost system, the optimization for growth and protein production has been achieved by acting on the metabolic needs of the bacterial strains. Then, the His-tagged protein has been purified by Ni2+-chelating chromatography and reconstituted in proteoliposomes for transport activity assays. The expressed protein was in a folded/active state allowing functional and kinetic characterization. Interestingly, the features of the recombinant protein meet those of the native one extracted from intact cells, further confirming the suitability of E. coli as a host for the expression of human proteins. This study opens perspectives for elucidating other molecular aspects of xCT, as well as for studying the interaction with endogenous and exogenous compounds, relevant to human health.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号