Recalcitrant species

  • 文章类型: Journal Article
    植物细胞,组织,和器官培养(PCTOC)已被用作基础研究的实验系统,允许通过基因过表达或抑制和研究参与胚胎发生和器官发生的过程或与次生代谢产物的潜在生产有关的过程来展示基因功能,在其他人中。另一方面,PCTOC也已在商业水平上用于多种植物物种的无性繁殖(微繁殖),主要是观赏植物,但也有园艺作物,如马铃薯或水果和树种,并生产高质量的无病植物。此外,PCTOC方案是作物育种作物中重要的辅助系统,用于产生纯系(纯合)以产生杂种,以获得具有更高产量或更好性能的多倍体植物。PCTOC已用于保存和保存不同作物或受威胁物种的种质。只有建立了有效的体外植物再生方案,才能通过基因工程和基因组编辑进行植物遗传改良。目前,不同的公司专注于使用体外PCTOC将具有有趣生物活性的植物次生代谢物商业化。讨论了组学对PCTOC的影响。
    Plant cell, tissue, and organ cultures (PCTOC) have been used as experimental systems in basic research, allowing gene function demonstration through gene overexpression or repression and investigating the processes involved in embryogenesis and organogenesis or those related to the potential production of secondary metabolites, among others. On the other hand, PCTOC has also been applied at the commercial level for the vegetative multiplication (micropropagation) of diverse plant species, mainly ornamentals but also horticultural crops such as potato or fruit and tree species, and to produce high-quality disease-free plants. Moreover, PCTOC protocols are important auxiliary systems in crop breeding crops to generate pure lines (homozygous) to produce hybrids for the obtention of polyploid plants with higher yields or better performance. PCTOC has been utilized to preserve and conserve the germplasm of different crops or threatened species. Plant genetic improvement through genetic engineering and genome editing has been only possible thanks to the establishment of efficient in vitro plant regeneration protocols. Different companies currently focus on commercializing plant secondary metabolites with interesting biological activities using in vitro PCTOC. The impact of omics on PCTOC is discussed.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    植物转化仍然是制约植物科学进步的一大瓶颈,在基本和实践层面。大多数商业作物和次要作物对基因转化的顽固性质减缓了对全球粮食安全至关重要的大范围作物的科学进展。多年来,在术语“植物中”下松散分组的新型稳定转化策略已被提出并在大量模型(例如拟南芥和水稻)中进行了验证,主要(如小麦和大豆)和次要(如鹰嘴豆和Lablab豆)物种。植物内方法是革命性的,因为它被认为是基因型独立的,技术上简单(即没有或只有最少的组织培养步骤),负担得起的,并且易于在广泛的实验设置中实现。在这篇文章中,我们回顾并分类了300多篇研究文章,专利,theses,和视频展示了139种植物的105个不同属中不同植物转化策略的适用性。为了支持这一审查过程,我们提出了一个基于五个类别的植物技术分类系统,并为30多种不同的植物技术提出了一个新的命名法。作为补充,我们澄清了关于植物内概念框架的一些灰色地带,并提供了关于过去的见解,电流,以及这些技术对未来科学的影响。为了支持这个概念在整个社区的传播,这篇评论文章将作为所有科学家都能获得的关于植物转化策略的在线简编的介绍点。通过扩大我们对植物转化的了解,我们可以找到创新的方法来释放植物的全部潜力,支持科学知识的增长,并促进所有国家和机构的植物研究的公平发展。
    Plant transformation remains a major bottleneck to the improvement of plant science, both on fundamental and practical levels. The recalcitrant nature of most commercial and minor crops to genetic transformation slows scientific progress for a large range of crops that are essential for food security on a global scale. Over the years, novel stable transformation strategies loosely grouped under the term \"in planta\" have been proposed and validated in a large number of model (e.g. Arabidopsis and rice), major (e.g. wheat and soybean) and minor (e.g. chickpea and lablab bean) species. The in planta approach is revolutionary as it is considered genotype-independent, technically simple (i.e. devoid of or with minimal tissue culture steps), affordable, and easy to implement in a broad range of experimental settings. In this article, we reviewed and categorized over 300 research articles, patents, theses, and videos demonstrating the applicability of different in planta transformation strategies in 105 different genera across 139 plant species. To support this review process, we propose a classification system for the in planta techniques based on five categories and a new nomenclature for more than 30 different in planta techniques. In complement to this, we clarified some grey areas regarding the in planta conceptual framework and provided insights regarding the past, current, and future scientific impacts of these techniques. To support the diffusion of this concept across the community, this review article will serve as an introductory point for an online compendium about in planta transformation strategies that will be available to all scientists. By expanding our knowledge about in planta transformation, we can find innovative approaches to unlock the full potential of plants, support the growth of scientific knowledge, and stimulate an equitable development of plant research in all countries and institutions.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    测序和基因分型平台的使用经历了巨大的改进,能够产生丰富的基因组信息。尽管取得了这些进展,足够浓度的高质量基因组DNA(gDNA)的可用性通常是主要限制,特别是第三代测序平台。各种DNA提取方法和商业试剂盒是可用的。然而,其中许多是昂贵的,并且经常产生低产量或低质量的DNA,不适合下一代测序(NGS)平台。这里,我们描述了一种快速且廉价的DNA提取方法(SILEX),适用于多种植物物种和组织。
    SILEX是一种高通量DNA提取方案,基于标准CTAB方法与DNA二氧化硅基质回收,这允许获得不含抑制性化合物的NGS质量高分子量基因组植物DNA。将SILEX与标准CTAB提取方案和各种物种中常见的商业提取试剂盒进行了比较,包括顽固的,来自不同的家庭。与其他方法相比,SILEX产生更高浓度和更高质量的DNA。一个人可以在96分钟内手动提取48个样品,费用为0.12€/样品试剂和耗材。使用IlluminaHiSeq2500平台,使用单引物富集技术(SPET)成功对使用SILEX或商业试剂盒获得的数百个番茄gDNA样品进行了基因分型。此外,使用该方案从茄子提取的DNA通过脉冲场凝胶电泳(PFGE)进行评估,为大多数需要高分子量DNA的测序平台(如Nanopore或PacBio)获得合适的大小范围。
    高吞吐量,开发了快速且廉价的DNA提取方案,并对各种植物和组织进行了验证。SILEX提供了一个简单的,可扩展,高效和廉价的方式来提取DNA的各种下一代测序应用,包括SPET和Nanopore等。
    BACKGROUND: The use of sequencing and genotyping platforms has undergone dramatic improvements, enabling the generation of a wealth of genomic information. Despite this progress, the availability of high-quality genomic DNA (gDNA) in sufficient concentrations is often a main limitation, especially for third-generation sequencing platforms. A variety of DNA extraction methods and commercial kits are available. However, many of these are costly and frequently give either low yield or low-quality DNA, inappropriate for next generation sequencing (NGS) platforms. Here, we describe a fast and inexpensive DNA extraction method (SILEX) applicable to a wide range of plant species and tissues.
    RESULTS: SILEX is a high-throughput DNA extraction protocol, based on the standard CTAB method with a DNA silica matrix recovery, which allows obtaining NGS-quality high molecular weight genomic plant DNA free of inhibitory compounds. SILEX was compared with a standard CTAB extraction protocol and a common commercial extraction kit in a variety of species, including recalcitrant ones, from different families. In comparison with the other methods, SILEX yielded DNA in higher concentrations and of higher quality. Manual extraction of 48 samples can be done in 96 min by one person at a cost of 0.12 €/sample of reagents and consumables. Hundreds of tomato gDNA samples obtained with either SILEX or the commercial kit were successfully genotyped with Single Primer Enrichment Technology (SPET) with the Illumina HiSeq 2500 platform. Furthermore, DNA extracted from Solanum elaeagnifolium using this protocol was assessed by Pulsed-field gel electrophoresis (PFGE), obtaining a suitable size ranges for most sequencing platforms that required high-molecular-weight DNA such as Nanopore or PacBio.
    CONCLUSIONS: A high-throughput, fast and inexpensive DNA extraction protocol was developed and validated for a wide variety of plants and tissues. SILEX offers an easy, scalable, efficient and inexpensive way to extract DNA for various next-generation sequencing applications including SPET and Nanopore among others.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    这篇评论致力于纪念教授。DomenicoMariotti,他为建立意大利农业遗传学研究社区做出了重大贡献,并在1980年代在意大利进行了农杆菌介导的植物遗传转化和再生的第一个实验。以他的科学兴趣为指导原则,这篇综述总结了植物生物技术和基础研究的最新进展,旨在:(i)利用体外植物细胞和组织培养物诱导遗传变异并产生有用的代谢物;(ii)获得对发根农杆菌rol基因的生化功能及其在代谢物产生中的应用的新见解,果树改造,和反向遗传学;(iii)改善豆科植物的遗传转化,它们中的大多数都难以再生;(iv)解开植物形态发生中KNOTTED1样同源盒(KNOX)转录因子作为激素稳态的关键调节剂的潜力;(v)阐明了李属树种从幼年向成年阶段过渡的分子机制。
    This review is dedicated to the memory of Prof. Domenico Mariotti, who significantly contributed to establishing the Italian research community in Agricultural Genetics and carried out the first experiments of Agrobacterium-mediated plant genetic transformation and regeneration in Italy during the 1980s. Following his scientific interests as guiding principles, this review summarizes the recent advances obtained in plant biotechnology and fundamental research aiming to: (i) Exploit in vitro plant cell and tissue cultures to induce genetic variability and to produce useful metabolites; (ii) gain new insights into the biochemical function of Agrobacterium rhizogenes rol genes and their application to metabolite production, fruit tree transformation, and reverse genetics; (iii) improve genetic transformation in legume species, most of them recalcitrant to regeneration; (iv) untangle the potential of KNOTTED1-like homeobox (KNOX) transcription factors in plant morphogenesis as key regulators of hormonal homeostasis; and (v) elucidate the molecular mechanisms of the transition from juvenility to the adult phase in Prunus tree species.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

公众号