Rad51 Recombinase

Rad51 重组酶
  • 文章类型: Journal Article
    在减数分裂期间,链交换蛋白RAD51和DMC1的核蛋白纤丝对于通过同源重组(HR)修复SPO11产生的DNA双链断裂(DSB)至关重要。正和负RAD51/DMC1调节剂的平衡活性确保了适当的重组。Fidgetin样1(FIGNL1)先前显示出负调节人细胞中的RAD51。然而,FIGNL1在哺乳动物减数分裂重组中的作用仍然未知。这里,我们使用雄性种系特异性条件性敲除(cKO)小鼠模型破译FIGNL1和FIGNL1重组和有丝分裂相互作用调节因子(FIRRM)的减数分裂功能。FIGNL1和FIRRM都是完成小鼠精母细胞减数分裂前期所必需的。尽管在减数分裂DSB热点的ssDNA上有效募集DMC1,晚期重组中间体的形成在FirrmcKO和Fignl1cKO精母细胞中是有缺陷的。此外,FIGNL1-FIRRM复合物限制了RAD51和DMC1在完整染色质上的积累,独立于SPO11催化的DSB的形成。纯化的人FIGNL1ΔN改变了RAD51/DMC1核蛋白丝结构,并在体外抑制了链入侵。因此,这种复合物可能调节减数分裂DSB位点的RAD51和DMC1缔合,从而促进高效的链入侵和重组中间体的加工.
    During meiosis, nucleoprotein filaments of the strand exchange proteins RAD51 and DMC1 are crucial for repairing SPO11-generated DNA double-strand breaks (DSBs) by homologous recombination (HR). A balanced activity of positive and negative RAD51/DMC1 regulators ensures proper recombination. Fidgetin-like 1 (FIGNL1) was previously shown to negatively regulate RAD51 in human cells. However, FIGNL1\'s role during meiotic recombination in mammals remains unknown. Here, we decipher the meiotic functions of FIGNL1 and FIGNL1 Interacting Regulator of Recombination and Mitosis (FIRRM) using male germline-specific conditional knock-out (cKO) mouse models. Both FIGNL1 and FIRRM are required for completing meiotic prophase in mouse spermatocytes. Despite efficient recruitment of DMC1 on ssDNA at meiotic DSB hotspots, the formation of late recombination intermediates is defective in Firrm cKO and Fignl1 cKO spermatocytes. Moreover, the FIGNL1-FIRRM complex limits RAD51 and DMC1 accumulation on intact chromatin, independently from the formation of SPO11-catalyzed DSBs. Purified human FIGNL1ΔN alters the RAD51/DMC1 nucleoprotein filament structure and inhibits strand invasion in vitro. Thus, this complex might regulate RAD51 and DMC1 association at sites of meiotic DSBs to promote proficient strand invasion and processing of recombination intermediates.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    同源重组(HR)对于维持基因组稳定性至关重要。HR期间,复制蛋白A(RPA)快速包被末端切除产生的3'尾单链DNA(ssDNA)。然后,ssDNA结合的RPA必须及时用Rad51重组酶取代,以形成驱动同源性搜索和HR修复的Rad51核蛋白丝。细胞如何调节Rad51组装动力学并协调RPA和Rad51作用以确保适当的HR仍然知之甚少。这里,我们确定了Rtt105,一个Ty1转座子调节因子,在HR期间采取行动刺激Rad51组装并协调RPA和Rad51行动。我们发现Rtt105在体外和体内与Rad51相互作用,并抑制Rad51的腺苷5'三磷酸(ATP)水解活性。我们表明Rtt105直接刺激动态Rad51-ssDNA组装,链交换,和体外D环形成。值得注意的是,我们发现Rtt105通过不同的基序物理调节Rad51和RPA与ssDNA的结合,并且这两种调节在促进Rad51成核中是必要的和上位的,链交换,HR修复因此,破坏任何一种相互作用,损害HR并赋予DNA损伤敏感性,强调Rtt105在协调Rad51和RPA行动中的重要性。我们的工作揭示了调节Rad51细丝动力学和HR协调的其他机制层。
    Homologous recombination (HR) is essential for the maintenance of genome stability. During HR, Replication Protein A (RPA) rapidly coats the 3\'-tailed single-strand DNA (ssDNA) generated by end resection. Then, the ssDNA-bound RPA must be timely replaced by Rad51 recombinase to form Rad51 nucleoprotein filaments that drive homology search and HR repair. How cells regulate Rad51 assembly dynamics and coordinate RPA and Rad51 actions to ensure proper HR remains poorly understood. Here, we identified that Rtt105, a Ty1 transposon regulator, acts to stimulate Rad51 assembly and orchestrate RPA and Rad51 actions during HR. We found that Rtt105 interacts with Rad51 in vitro and in vivo and restrains the adenosine 5\' triphosphate (ATP) hydrolysis activity of Rad51. We showed that Rtt105 directly stimulates dynamic Rad51-ssDNA assembly, strand exchange, and D-loop formation in vitro. Notably, we found that Rtt105 physically regulates the binding of Rad51 and RPA to ssDNA via different motifs and that both regulations are necessary and epistatic in promoting Rad51 nucleation, strand exchange, and HR repair. Consequently, disrupting either of the interactions impaired HR and conferred DNA damage sensitivity, underscoring the importance of Rtt105 in orchestrating the actions of Rad51 and RPA. Our work reveals additional layers of mechanisms regulating Rad51 filament dynamics and the coordination of HR.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    尽管小分子和重组蛋白具有增强同源定向修复(HDR)效率的潜力,单链DNA(ssDNA)供体,按照目前的设计和化学修饰,对于精确的基因编辑来说仍然是次优的。这里,我们筛选了DNA修复相关蛋白的偏向ssDNA结合序列,并将RAD51优选序列设计为ssDNA供体的HDR增强模块。具有这些模块的供体对RAD51表现出增强的亲和力,从而当与Cas9、nCas9和Cas12a合作时,增强各种基因组基因座和细胞类型的HDR效率。通过与非同源末端连接(NHEJ)或HDRobust策略的抑制剂组合,这些模块化ssDNA供体可实现高达90.03%(中位数74.81%)的HDR效率。靶向内源性蛋白质的HDR增强模块能够实现无化学修饰的策略,以提高ssDNA供体对精确基因编辑的功效。
    Despite the potential of small molecules and recombinant proteins to enhance the efficiency of homology-directed repair (HDR), single-stranded DNA (ssDNA) donors, as currently designed and chemically modified, remain suboptimal for precise gene editing. Here, we screen the biased ssDNA binding sequences of DNA repair-related proteins and engineer RAD51-preferred sequences into HDR-boosting modules for ssDNA donors. Donors with these modules exhibit an augmented affinity for RAD51, thereby enhancing HDR efficiency across various genomic loci and cell types when cooperated with Cas9, nCas9, and Cas12a. By combining with an inhibitor of non-homologous end joining (NHEJ) or the HDRobust strategy, these modular ssDNA donors achieve up to 90.03% (median 74.81%) HDR efficiency. The HDR-boosting modules targeting an endogenous protein enable a chemical modification-free strategy to improve the efficacy of ssDNA donors for precise gene editing.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    PLK1目前处于有丝分裂研究的前沿,并已成为小细胞肺癌(SCLC)治疗的潜在靶标。然而,影响PLK1抑制剂疗效的因素尚不清楚.在这里,BRCA1被鉴定为影响SCLC细胞对BI-2536的反应的关键因素。用alisertib瞄准AURKA,在无毒浓度下,减少BI-2536诱导的BRCA1和RAD51的积累,导致SCLC细胞中DNA修复缺陷和有丝分裂细胞死亡。体内实验证实,将BI-2536与alisertib组合会损害DNA修复能力并显着延迟肿瘤生长。此外,GSEA分析和功能缺失和获得测定表明MYC/MYCN信号传导对于确定SCLC细胞对BI-2536及其与alisertib的组合的敏感性至关重要。研究进一步揭示RAD51表达与PLK1/AURKA表达呈正相关,与BI-2536的IC50值呈负相关。操纵RAD51表达显着影响BI-2536的功效,并恢复MYC/MYCN诱导的SCLC细胞中BI-2536敏感性的增强。我们的发现表明,BRCA1和MYC/MYCN-RAD51轴控制小细胞肺癌对BI-2536及其与alisertib的组合的反应。本研究提出联合使用BI-2536和alisertib作为治疗SCLC患者MYC/MYCN激活的新治疗策略。
    PLK1 is currently at the forefront of mitotic research and has emerged as a potential target for small cell lung cancer (SCLC) therapy. However, the factors influencing the efficacy of PLK1 inhibitors remain unclear. Herein, BRCA1 was identified as a key factor affecting the response of SCLC cells to BI-2536. Targeting AURKA with alisertib, at a non-toxic concentration, reduced the BI-2536-induced accumulation of BRCA1 and RAD51, leading to DNA repair defects and mitotic cell death in SCLC cells. In vivo experiments confirmed that combining BI-2536 with alisertib impaired DNA repair capacity and significantly delayed tumor growth. Additionally, GSEA analysis and loss- and gain-of-function assays demonstrated that MYC/MYCN signaling is crucial for determining the sensitivity of SCLC cells to BI-2536 and its combination with alisertib. The study further revealed a positive correlation between RAD51 expression and PLK1/AURKA expression, and a negative correlation with the IC50 values of BI-2536. Manipulating RAD51 expression significantly influenced the efficacy of BI-2536 and restored the MYC/MYCN-induced enhancement of BI-2536 sensitivity in SCLC cells. Our findings indicate that the BRCA1 and MYC/MYCN-RAD51 axes govern the response of small cell lung cancer to BI-2536 and its combination with alisertib. This study propose the combined use of BI-2536 and alisertib as a novel therapeutic strategy for the treatment of SCLC patients with MYC/MYCN activation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    基因组不稳定性的一个关键但经常被忽视的组成部分是在没有功能同源重组(HR)蛋白的情况下,在DNA复制过程中出现单链DNA(ssDNA)缺口。例如RAD51和BRCA1/2。原核生物的研究揭示了RAD51细菌直系同源物的双重作用,RecA,在HR和复制叉的保护中,强调其在防止ssDNA缺口形成方面的重要作用,这对细胞活力至关重要。这种现象在缺乏HR的真核细胞中得到证实,其中观察到新合成的DNA中ssDNA缺口的形成及其随后通过MRE11核酸酶的加工。没有功能性HR蛋白,细胞采用替代的ssDNA间隙填充机制来确保存活,尽管这种补偿性反应会损害基因组的稳定性。一个值得注意的例子是跨病变合成(TLS)聚合酶POLζ的参与,与修复蛋白POLθ一起,抑制复制性ssDNA缺口。持续的ssDNA缺口可能会导致复制叉崩溃,染色体异常,和细胞死亡,这有助于癌症进展和对治疗的抵抗。阐明避免ssDNA缺口和保护复制叉的过程对于通过利用这些途径中癌细胞的脆弱性来增强癌症治疗方法至关重要。
    A key but often neglected component of genomic instability is the emergence of single-stranded DNA (ssDNA) gaps during DNA replication in the absence of functional homologous recombination (HR) proteins, such as RAD51 and BRCA1/2. Research in prokaryotes has shed light on the dual role of RAD51\'s bacterial ortholog, RecA, in HR and the protection of replication forks, emphasizing its essential role in preventing the formation of ssDNA gaps, which is vital for cellular viability. This phenomenon was corroborated in eukaryotic cells deficient in HR, where the formation of ssDNA gaps within newly synthesized DNA and their subsequent processing by the MRE11 nuclease were observed. Without functional HR proteins, cells employ alternative ssDNA gap-filling mechanisms to ensure survival, though this compensatory response can compromise genomic stability. A notable example is the involvement of the translesion synthesis (TLS) polymerase POLζ, along with the repair protein POLθ, in the suppression of replicative ssDNA gaps. Persistent ssDNA gaps may result in replication fork collapse, chromosomal anomalies, and cell death, which contribute to cancer progression and resistance to therapy. Elucidating the processes that avert ssDNA gaps and safeguard replication forks is critical for enhancing cancer treatment approaches by exploiting the vulnerabilities of cancer cells in these pathways.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    背景:转换/蔗糖不可发酵(SWI/SNF)相关,关联矩阵,染色质的肌动蛋白依赖性调节剂,亚家族A(SMARCA)成员2和成员4(SMARCA2/4)是旁系同源物,并且充当用于染色质重塑的SWI/SNF复合物中的关键酶亚基。然而,SMARCA2/4在DNA损伤应答中的作用尚不清楚.
    方法:进行激光微照射试验以检查SMARCA2/4的关键结构域,以将SWI/SNF复合物重新定位到DNA损伤中。为了检查介导SMARCA2/4募集的关键因素,在用共济失调毛细血管扩张突变(ATM)抑制剂处理的HeLa细胞中检查了SMARCA2/4向DNA损伤的重新定位。共济失调毛细血管扩张症和Rad3相关蛋白(ATR),CREB结合蛋白(CBP)及其同源物p300(p300/CBP),或聚(ADP-核糖)聚合酶(PARP)1/2以及H2AX缺陷型HeLa细胞。此外,通过用小分子抑制剂FHD286或化合物14伴随抑制SMARCA2/4,检查了SMARCA2/4在辐射敏感51(RAD51)病灶形成和同源重组修复中的功能。最后,使用集落形成测定法,研究了PARP抑制剂和SMARCA2/4抑制剂对抑制肿瘤细胞生长的协同作用。
    结果:我们表明SMARCA2/4在DNA损伤后重新定位到DNA损伤,这需要他们的ATP酶活性。此外,这些ATP酶活性也是SWI/SNF复合物中其他亚基向DNA损伤转移所必需的.有趣的是,SMARCA2/4的重新定位独立于γH2AX,ATM,ATR,p300/CBP,或PARP1/2,表明它可以直接识别DNA损伤作为DNA损伤传感器。缺乏SMARCA2/4延长了γH2AX的保留,环指蛋白8(RNF8)和乳腺癌易感基因1(BRCA1)在DNA损伤和损害RAD51依赖性同源重组修复。此外,SMARCA2/4抑制剂的治疗使肿瘤细胞对PARP抑制剂治疗敏感。
    结论:本研究揭示SMARCA2/4作为双链断裂修复的DNA损伤修复因子。
    BACKGROUND: The switching/sucrose non-fermentable (SWI/SNF) Related, Matrix Associated, Actin Dependent Regulator Of Chromatin, Subfamily A (SMARCA) member 2 and member 4 (SMARCA2/4) are paralogs and act as the key enzymatic subunits in the SWI/SNF complex for chromatin remodeling. However, the role of SMARCA2/4 in DNA damage response remains unclear.
    METHODS: Laser microirradiation assays were performed to examine the key domains of SMARCA2/4 for the relocation of the SWI/SNF complex to DNA lesions. To examine the key factors that mediate the recruitment of SMARCA2/4, the relocation of SMARCA2/4 to DNA lesions was examined in HeLa cells treated with inhibitors of Ataxia-telangiectasia-mutated (ATM), Ataxia telangiectasia and Rad3-related protein (ATR), CREB-binding protein (CBP) and its homologue p300 (p300/CBP), or Poly (ADP-ribose) polymerase (PARP) 1/2 as well as in H2AX-deficient HeLa cells. Moreover, by concomitantly suppressing SMARCA2/4 with the small molecule inhibitor FHD286 or Compound 14, the function of SMARCA2/4 in Radiation sensitive 51 (RAD51) foci formation and homologous recombination repair was examined. Finally, using a colony formation assay, the synergistic effect of PARP inhibitors and SMARCA2/4 inhibitors on the suppression of tumor cell growth was examined.
    RESULTS: We show that SMARCA2/4 relocate to DNA lesions in response to DNA damage, which requires their ATPase activities. Moreover, these ATPase activities are also required for the relocation of other subunits in the SWI/SNF complex to DNA lesions. Interestingly, the relocation of SMARCA2/4 is independent of γH2AX, ATM, ATR, p300/CBP, or PARP1/2, indicating that it may directly recognize DNA lesions as a DNA damage sensor. Lacking SMARCA2/4 prolongs the retention of γH2AX, Ring Finger Protein 8 (RNF8) and Breast cancer susceptibility gene 1 (BRCA1) at DNA lesions and impairs RAD51-dependent homologous recombination repair. Furthermore, the treatment of an SMARCA2/4 inhibitor sensitizes tumor cells to PARP inhibitor treatment.
    CONCLUSIONS: This study reveals SMARCA2/4 as a DNA damage repair factor for double-strand break repair.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    遗传毒性物质广泛存在于环境和食物供应中,由于它们可能引起DNA损伤和癌症,因此构成严重的健康风险。传统的遗传毒性试验,虽然有价值,受到灵敏度不足的限制,特异性,和效率,特别是当应用于复杂的食物基质时。这项研究引入了一种多参数高含量分析(HCA),用于检测复杂食品基质中的基因毒性物质。开发的测定法测量三种基因毒性生物标志物,包括γ-H2AX,p-H3和RAD51,提高了遗传毒性筛查的敏感性和准确性。此外,该测定法有效区分具有不同作用模式的基因毒性化合物,这不仅可以更全面地评估DNA损伤和细胞对遗传毒性应激的反应,还可以为探索遗传毒性机制提供新的见解。值得注意的是,五个测试的食物矩阵,包括咖啡,茶,白菜,菠菜,还有番茄,被发现在适当的稀释比例下不会干扰这些生物标志物的检测,验证了食品工业中基因毒性化合物筛选试验的稳健性和可靠性。多种生物标志物与HCA的整合为检测和评估食品供应中的基因毒性物质提供了一种有效的方法。在毒理学研究和食品安全方面具有潜在的应用。
    Genotoxic substances widely exist in the environment and the food supply, posing serious health risks due to their potential to induce DNA damage and cancer. Traditional genotoxicity assays, while valuable, are limited by insufficient sensitivity, specificity, and efficiency, particularly when applied to complex food matrices. This study introduces a multiparametric high-content analysis (HCA) for the detection of genotoxic substances in complex food matrices. The developed assay measures three genotoxic biomarkers, including γ-H2AX, p-H3, and RAD51, which enhances the sensitivity and accuracy of genotoxicity screening. Moreover, the assay effectively distinguishes genotoxic compounds with different modes of action, which not only offers a more comprehensive assessment of DNA damage and the cellular response to genotoxic stress but also provides new insights into the exploration of genotoxicity mechanisms. Notably, the five tested food matrices, including coffee, tea, pak choi, spinach, and tomato, were found not to interfere with the detection of these biomarkers under proper dilution ratios, validating the robustness and reliability of the assay for the screening of genotoxic compounds in the food industry. The integration of multiple biomarkers with HCA provides an efficient method for detecting and assessing genotoxic substances in the food supply, with potential applications in toxicology research and food safety.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Letter
    暂无摘要。
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    幽门螺杆菌(H.pylori),连同它的CagA,与造成DNA损伤有关,细胞周期停滞,凋亡,和胃癌的发展。尽管lncRNAH19在胃癌中大量表达并作为原癌基因发挥作用,目前尚不清楚lncRNAH19是否有助于幽门螺杆菌CagA的致癌过程。本研究探讨了H19在幽门螺杆菌诱导的DNA损伤反应和恶性肿瘤中的作用。观察到感染CagA+H.pylori菌株(GZ7/cagA)的细胞显示出显著较高的H19表达,导致γH2A增加。X和p-ATM表达下降,p53和Rad51表达下降。还观察到更快的细胞迁移和侵袭,H19基因在幽门螺杆菌中被逆转。YWHAZ被鉴定为H19靶蛋白,在H19敲低细胞中表达增加。GZ7/cagA感染对H19敲低诱导的YWHAZ表达增加有反应。此外,H19敲低刺激细胞进入G2期并减弱GZ7/cagA感染对细胞S期屏障的影响。结果提示幽门螺杆菌CagA可上调H19表达,参与DNA损伤反应,促进细胞迁移和侵袭,并可能通过调节YWHAZ影响细胞周期阻滞。
    Helicobacter pylori (H. pylori), together with its CagA, has been implicated in causing DNA damage, cell cycle arrest, apoptosis, and the development of gastric cancer. Although lncRNA H19 is abundantly expressed in gastric cancer and functions as a pro-oncogene, it remains unclear whether lncRNA H19 contributes to the oncogenic process of H. pylori CagA. This study investigates the role of H19 in the DNA damage response and malignancy induced by H. pylori. It was observed that cells infected with CagA+ H. pylori strain (GZ7/cagA) showed significantly higher H19 expression, resulting in increased γH2A.X and p-ATM expression and decreased p53 and Rad51 expression. Faster cell migration and invasion was also observed, which was reversed by H19 knockdown in H. pylori. YWHAZ was identified as an H19 target protein, and its expression was increased in H19 knockdown cells. GZ7/cagA infection responded to the increased YWHAZ expression induced by H19 knockdown. In addition, H19 knockdown stimulated cells to enter the G2-phase and attenuated the effect of GZ7/cagA infection on the cellular S-phase barrier. The results suggest that H. pylori CagA can upregulate H19 expression, participate in the DNA damage response and promote cell migration and invasion, and possibly affect cell cycle arrest via regulation of YWHAZ.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    使用CRISPR/Cas9切口酶,我们研究了复制机制和单链断裂之间的相互作用,内源性DNA损伤的最常见形式之一。我们表明,在前导链缺口处的复制叉塌陷会产生切除的单端双链断裂(seDSB),这些断裂通过同源重组(HR)修复。如果这些SEDSB没有得到及时修复,相邻叉的到达会产生双端DSB(deDSB),这可能会导致HR缺陷癌症的基因组瘢痕形成。当复制叉绕过滞后链缺口时,也可以直接生成deDSB。与独立于复制而产生的去DSB不同,切口诱导的se/deDSBs末端切除是BRCA1非依赖性的。然而,BRCA1拮抗53BP1抑制RAD51细丝形成。这些结果突出了保持复制叉稳定性的独特机制。
    Using CRISPR-Cas9 nicking enzymes, we examined the interaction between the replication machinery and single-strand breaks, one of the most common forms of endogenous DNA damage. We show that replication fork collapse at leading-strand nicks generates resected single-ended double-strand breaks (seDSBs) that are repaired by homologous recombination (HR). If these seDSBs are not promptly repaired, arrival of adjacent forks creates double-ended DSBs (deDSBs), which could drive genomic scarring in HR-deficient cancers. deDSBs can also be generated directly when the replication fork bypasses lagging-strand nicks. Unlike deDSBs produced independently of replication, end resection at nick-induced seDSBs and deDSBs is BRCA1-independent. Nevertheless, BRCA1 antagonizes 53BP1 suppression of RAD51 filament formation. These results highlight distinctive mechanisms that maintain replication fork stability.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号