RNA Folding

RNA 折叠
  • 文章类型: Journal Article
    RNA结构和功能的多样性影响自原基以来的所有生命形式。我们使用比色力光谱法来研究以前未开发的低温条件下的RNA折叠景观。我们发现沃森-克里克RNA发夹,最基本的二级结构要素,经历低于[公式:参见文字]C的玻璃状转变,其中热容量突然变化,RNA折叠成各种错误折叠的结构。我们假设RNA生物化学改变,由序列独立的核糖-水相互作用决定,超过序列依赖性碱基配对。无处不在的核糖-水相互作用导致TG以下的通用RNA相变,例如在[公式:参见文本]C处的最大稳定性,其中水密度最大,和冷变性在[公式:见文本]C。RNA冷生物化学可能对RNA的功能和进化产生深远的影响。
    RNA\'s diversity of structures and functions impacts all life forms since primordia. We use calorimetric force spectroscopy to investigate RNA folding landscapes in previously unexplored low-temperature conditions. We find that Watson-Crick RNA hairpins, the most basic secondary structure elements, undergo a glass-like transition below [Formula: see text]C where the heat capacity abruptly changes and the RNA folds into a diversity of misfolded structures. We hypothesize that an altered RNA biochemistry, determined by sequence-independent ribose-water interactions, outweighs sequence-dependent base pairing. The ubiquitous ribose-water interactions lead to universal RNA phase transitions below TG, such as maximum stability at [Formula: see text]C where water density is maximum, and cold denaturation at [Formula: see text]C. RNA cold biochemistry may have a profound impact on RNA function and evolution.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    从多步骤途径中有效生产化学物质的工程代谢需要优化多基因表达程序以实现酶平衡。CRISPR-Cas转录控制系统正在成为编程多基因表达的重要工具。但是向导RNA折叠的低可预测性会破坏表达控制。这里,我们将修饰的指导RNA(scRNA)对大肠杆菌中CRISPR激活(CRISPRa)的功效与描述scRNA折叠到活性结构中的速率的计算动力学参数(rS=0.8)相关联。该参数还可以实现scRNAs的正向设计,允许我们设计一个由三个合成CRISPRa启动子组成的系统,该系统可以正交激活(>35倍)所选输出的表达。通过组合激活调谐,我们描述了一个表达两种不同生物合成途径的三维设计空间,证明了蝶啶和人乳寡糖产品的可变产量。这种RNA设计方法有助于代谢途径的组合优化,并可能加速细菌宿主中有效多基因调控程序的常规设计。
    Engineering metabolism to efficiently produce chemicals from multi-step pathways requires optimizing multi-gene expression programs to achieve enzyme balance. CRISPR-Cas transcriptional control systems are emerging as important tools for programming multi-gene expression, but poor predictability of guide RNA folding can disrupt expression control. Here, we correlate efficacy of modified guide RNAs (scRNAs) for CRISPR activation (CRISPRa) in E. coli with a computational kinetic parameter describing scRNA folding rate into the active structure (rS = 0.8). This parameter also enables forward design of scRNAs, allowing us to design a system of three synthetic CRISPRa promoters that can orthogonally activate (>35-fold) expression of chosen outputs. Through combinatorial activation tuning, we profile a three-dimensional design space expressing two different biosynthetic pathways, demonstrating variable production of pteridine and human milk oligosaccharide products. This RNA design approach aids combinatorial optimization of metabolic pathways and may accelerate routine design of effective multi-gene regulation programs in bacterial hosts.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    人类线粒体基因组编码关键的氧化磷酸化系统蛋白,有氧能量传导的关键。它们是从九种单顺反子和两种双顺反子转录本翻译而来的,它们的天然结构仍未被探索,在理解线粒体基因表达方面存在差距。在这项工作中,我们设计了线粒体硫酸二甲酯突变分析测序(mitoDMS-MaPseq)方法,并使用期望最大化(DREEM)聚类检测RNA折叠集合,以解开野生型(WT)和富含亮氨酸的五肽重复蛋白(LRPPRC)缺陷细胞中的天然线粒体信使RNA(mt-mRNA)结构。我们的发现阐明了LRPPRC作为保持酶的作用,有助于维持mt-mRNA折叠和有效翻译。WT线粒体中的mt-mRNA结构见解,再加上代谢标记,揭示潜在的mRNA程序化翻译暂停和独特的程序化核糖体移码机制。我们的数据定义了线粒体基因表达调控的关键层。这些mt-mRNA折叠图谱为研究不同生理和病理背景下的mt-mRNA结构提供了参考。
    The human mitochondrial genome encodes crucial oxidative phosphorylation system proteins, pivotal for aerobic energy transduction. They are translated from nine monocistronic and two bicistronic transcripts whose native structures remain unexplored, posing a gap in understanding mitochondrial gene expression. In this work, we devised the mitochondrial dimethyl sulfate mutational profiling with sequencing (mitoDMS-MaPseq) method and applied detection of RNA folding ensembles using expectation-maximization (DREEM) clustering to unravel the native mitochondrial messenger RNA (mt-mRNA) structurome in wild-type (WT) and leucine-rich pentatricopeptide repeat-containing protein (LRPPRC)-deficient cells. Our findings elucidate LRPPRC\'s role as a holdase contributing to maintaining mt-mRNA folding and efficient translation. mt-mRNA structural insights in WT mitochondria, coupled with metabolic labeling, unveil potential mRNA-programmed translational pausing and a distinct programmed ribosomal frameshifting mechanism. Our data define a critical layer of mitochondrial gene expression regulation. These mt-mRNA folding maps provide a reference for studying mt-mRNA structures in diverse physiological and pathological contexts.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    CRISPR-Cas12a在成熟过程中结合并处理单个pre-crRNA,为基因组编辑应用程序提供了一个简单的工具。这里,我们构建了Cas12a体外预crRNA加工的动力学和热力学框架,我们测量了前crRNA不同区域对该反应的贡献。我们发现pre-crRNA与Cas12a(Kd=0.6pM)快速且非常紧密地结合,使得pre-crRNA结合对于加工是完全限速的,并且因此确定Cas12a对不同pre-crRNA的特异性。引导序列对pre-crRNA的结合亲和力贡献10倍,而上游序列的缺失没有显著影响。处理后,成熟crRNA以相当的亲和力保持与Cas12a非常紧密地结合。引人注目的是,处理后,引导区域的亲和力贡献增加到600倍,这表明形成了额外的接触,并可能预先订购crRNA以进行有效的DNA靶标识别。使用直接竞争试验,我们发现pre-crRNA结合特异性对指导序列的变化是稳健的,添加3\'扩展名,和引导区域内的二级结构。然而,引导区稳定的二级结构可以强烈抑制DNA靶向,这表明在crRNA设计中应该小心。我们的结果共同为Cas12a的pre-crRNA结合和加工提供了定量框架,并提出了在基因组编辑应用中优化crRNA设计的策略。
    CRISPR-Cas12a binds and processes a single pre-crRNA during maturation, providing a simple tool for genome editing applications. Here, we constructed a kinetic and thermodynamic framework for pre-crRNA processing by Cas12a in vitro, and we measured the contributions of distinct regions of the pre-crRNA to this reaction. We find that the pre-crRNA binds rapidly and extraordinarily tightly to Cas12a (Kd = 0.6 pM), such that pre-crRNA binding is fully rate limiting for processing and therefore determines the specificity of Cas12a for different pre-crRNAs. The guide sequence contributes 10-fold to the binding affinity of the pre-crRNA, while deletion of an upstream sequence has no significant effect. After processing, the mature crRNA remains very tightly bound to Cas12a with a comparable affinity. Strikingly, the affinity contribution of the guide region increases to 600-fold after processing, suggesting that additional contacts are formed and may pre-order the crRNA for efficient DNA target recognition. Using a direct competition assay, we find that pre-crRNA binding specificity is robust to changes in the guide sequence, addition of a 3\' extension, and secondary structure within the guide region. However, stable secondary structure in the guide region can strongly inhibit DNA targeting, indicating that care should be taken in crRNA design. Together our results provide a quantitative framework for pre-crRNA binding and processing by Cas12a and suggest strategies for optimizing crRNA design in genome editing applications.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    在化学和生物物理学中,从非生命物质中创建生命系统是一个巨大的挑战。生命的早期历史可以从核酶建立的益生元“RNA世界”的想法中提供灵感,其中所有的遗传和催化活性都是由RNA执行的。这样一个系统可能比今天描述生活的相互依存的中心法则简单得多。同时,合作系统需要一种机制,如细胞区隔,以便生存和进化。因此,最小的细胞可能由包围益生元RNA代谢的简单囊泡组成。囊泡的内部体积由于其封闭的边界而成为独特的环境,这改变了大分子的扩散和可用体积,并改变了有效的分子浓度,在其他考虑中。这些物理效应在机械上不同于化学相互作用,如静电排斥,这也可能发生在膜边界和封装内容物之间。膜和RNA之间的间接和直接相互作用都会产生非直觉,模型原型细胞系统中的“紧急”行为。我们一直在研究膜囊泡内的包封将如何影响包封的RNA的折叠和活性。使用生物物理技术,如FRET,我们表征了囊泡内核酶的折叠和活性。模型原始细胞内的封装通常促进RNA折叠,与排除的体积效应一致,独立于化学相互作用。在所研究的两个不同系统(发夹状核酶和自氨基酰化RNA)中,这种能量稳定转化为增加的核酶活性。一个特别有趣的发现是封装可以拯救突变核酶的活性,这表明封装不仅会影响折叠和活性,还会影响进化。为了进一步研究这一点,我们开发了一种高通量测序试验来平行测量数千种核酶变体的氨基酰化动力学.结果揭示了与较差的变体相比,封装改善较好的核酶变体的趋势出乎意料。在进化过程中,这种效果会创造一个倾斜的运动场,可以这么说,这将为已经高活动量的变种带来额外的健身收益。根据费雪的自然选择基本定理,适应度变化的增加应该表现为更快的进化适应。这一预测在体外进化过程中得到了实验证实,我们观察到,当最初不同的核酶群体被封装在囊泡中时,它们更快地收敛到最活跃的序列。本帐户中的研究扩大了我们对新兴原始细胞行为的理解,通过展示如何简单地将RNA截留在囊泡中,这可能在囊泡形成过程中自发发生,可能会深刻影响RNA的进化格局。由于复制和选择的指数动力学,即使是活动和功能的微小变化也可能导致重大的进化后果。通过仔细研究最小但令人惊讶的复杂原始细胞的细节,我们可能有一天会追踪到一条从封装的RNA到生命系统的通路。
    ConspectusCreating a living system from nonliving matter is a great challenge in chemistry and biophysics. The early history of life can provide inspiration from the idea of the prebiotic \"RNA World\" established by ribozymes, in which all genetic and catalytic activities were executed by RNA. Such a system could be much simpler than the interdependent central dogma characterizing life today. At the same time, cooperative systems require a mechanism such as cellular compartmentalization in order to survive and evolve. Minimal cells might therefore consist of simple vesicles enclosing a prebiotic RNA metabolism.The internal volume of a vesicle is a distinctive environment due to its closed boundary, which alters diffusion and available volume for macromolecules and changes effective molecular concentrations, among other considerations. These physical effects are mechanistically distinct from chemical interactions, such as electrostatic repulsion, that might also occur between the membrane boundary and encapsulated contents. Both indirect and direct interactions between the membrane and RNA can give rise to nonintuitive, \"emergent\" behaviors in the model protocell system. We have been examining how encapsulation inside membrane vesicles would affect the folding and activity of entrapped RNA.Using biophysical techniques such as FRET, we characterized ribozyme folding and activity inside vesicles. Encapsulation inside model protocells generally promoted RNA folding, consistent with an excluded volume effect, independently of chemical interactions. This energetic stabilization translated into increased ribozyme activity in two different systems that were studied (hairpin ribozyme and self-aminoacylating RNAs). A particularly intriguing finding was that encapsulation could rescue the activity of mutant ribozymes, suggesting that encapsulation could affect not only folding and activity but also evolution. To study this further, we developed a high-throughput sequencing assay to measure the aminoacylation kinetics of many thousands of ribozyme variants in parallel. The results revealed an unexpected tendency for encapsulation to improve the better ribozyme variants more than worse variants. During evolution, this effect would create a tilted playing field, so to speak, that would give additional fitness gains to already-high-activity variants. According to Fisher\'s Fundamental Theorem of Natural Selection, the increased variance in fitness should manifest as faster evolutionary adaptation. This prediction was borne out experimentally during in vitro evolution, where we observed that the initially diverse ribozyme population converged more quickly to the most active sequences when they were encapsulated inside vesicles.The studies in this Account have expanded our understanding of emergent protocell behavior, by showing how simply entrapping an RNA inside a vesicle, which could occur spontaneously during vesicle formation, might profoundly affect the evolutionary landscape of the RNA. Because of the exponential dynamics of replication and selection, even small changes to activity and function could lead to major evolutionary consequences. By closely studying the details of minimal yet surprisingly complex protocells, we might one day trace a pathway from encapsulated RNA to a living system.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    背景:RNA设计在合成生物学和治疗学中的应用越来越多,由RNA在各种生物过程中的关键作用驱动。一个基本的挑战是找到满足给定结构约束的功能性RNA序列,称为逆折叠问题。已经出现了基于二级结构的计算方法来解决这个问题。然而,直接从3D结构设计RNA序列仍然具有挑战性,由于数据的稀缺性,非唯一的结构-序列映射,和RNA构象的灵活性。
    结果:在这项研究中,我们提出了核扩散,用于RNA反向折叠的生成扩散模型,可以学习给定3D主链结构的RNA序列的条件分布。我们的模型由基于图神经网络的结构模块和基于Transformer的序列模块组成,迭代地将随机序列转换为期望的序列。通过调整采样重量,我们的模型允许在序列恢复和多样性之间进行权衡,以探索更多的候选.我们基于RNA聚类对测试集进行拆分,对序列或结构相似性具有不同的截止值。我们的模型在序列恢复方面优于基线,序列相似性分裂平均相对提高11%,结构相似性分裂平均提高16%。此外,核扩散在各种RNA长度类别和RNA类型中表现一致。我们还应用计算机折叠来验证生成的序列是否可以折叠到给定的3DRNA主链中。我们的方法可能是RNA设计的强大工具,可以探索广阔的序列空间并找到3D结构约束的新颖解决方案。
    方法:源代码可在https://github.com/ml4bio/RiboDiffusion获得。
    BACKGROUND: RNA design shows growing applications in synthetic biology and therapeutics, driven by the crucial role of RNA in various biological processes. A fundamental challenge is to find functional RNA sequences that satisfy given structural constraints, known as the inverse folding problem. Computational approaches have emerged to address this problem based on secondary structures. However, designing RNA sequences directly from 3D structures is still challenging, due to the scarcity of data, the nonunique structure-sequence mapping, and the flexibility of RNA conformation.
    RESULTS: In this study, we propose RiboDiffusion, a generative diffusion model for RNA inverse folding that can learn the conditional distribution of RNA sequences given 3D backbone structures. Our model consists of a graph neural network-based structure module and a Transformer-based sequence module, which iteratively transforms random sequences into desired sequences. By tuning the sampling weight, our model allows for a trade-off between sequence recovery and diversity to explore more candidates. We split test sets based on RNA clustering with different cut-offs for sequence or structure similarity. Our model outperforms baselines in sequence recovery, with an average relative improvement of 11% for sequence similarity splits and 16% for structure similarity splits. Moreover, RiboDiffusion performs consistently well across various RNA length categories and RNA types. We also apply in silico folding to validate whether the generated sequences can fold into the given 3D RNA backbones. Our method could be a powerful tool for RNA design that explores the vast sequence space and finds novel solutions to 3D structural constraints.
    METHODS: The source code is available at https://github.com/ml4bio/RiboDiffusion.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    Extrinsic,实验信息可以以伪能量的形式整合到基于热力学的RNA折叠算法中。在系统发育相关序列的比对中可检测到RNA二级结构元件的进化保守性,并提供了某些碱基对存在的证据,这些碱基对也可以转化为假能量贡献。我们表明,从一致折叠模型(如RNAalifold)计算的质心碱基对可显著提高单序列的预测精度。事实证明,特定碱基对的证据比保存配对状态的位置特征更有用。与化学探测数据的比较,此外,有力地表明,系统发育碱基配对数据比从化学探测实验中获得的(非)配对性的位置特异性数据更有用。在这种情况下,我们证明,此外,使用热力学结构预测作为参考而不是已知的RNA结构,可以将信号从探测数据转换为伪能量。
    Extrinsic, experimental information can be incorporated into thermodynamics-based RNA folding algorithms in the form of pseudo-energies. Evolutionary conservation of RNA secondary structure elements is detectable in alignments of phylogenetically related sequences and provides evidence for the presence of certain base pairs that can also be converted into pseudo-energy contributions. We show that the centroid base pairs computed from a consensus folding model such as RNAalifold result in a substantial improvement of the prediction accuracy for single sequences. Evidence for specific base pairs turns out to be more informative than a position-wise profile for the conservation of the pairing status. A comparison with chemical probing data, furthermore, strongly suggests that phylogenetic base pairing data are more informative than position-specific data on (un)pairedness as obtained from chemical probing experiments. In this context we demonstrate, in addition, that the conversion of signal from probing data into pseudo-energies is possible using thermodynamic structure predictions as a reference instead of known RNA structures.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    准确的RNA结构模型对于设计调节其功能的小分子配体至关重要。本研究评估了六种独立的RNA3D结构预测方法-DeepFoldRNA,RhoFold,BRiQ,FARFAR2、SimRNA和Vfold2,由于知识产权问题,不包括基于Web的工具。我们专注于再现RNA-小分子复合物中存在的RNA结构,特别是模拟配体结合位点的能力。使用一组来自PDB的完整的RNA结构,其中包括不同的结构元素,我们发现,基于机器学习(ML)的方法有效地预测全局RNA折叠,但在局部相互作用的情况下准确性较低。相反,基于非ML的方法在模拟分子内相互作用方面表现出更高的精度,特别是二级结构限制。重要的是,配体结合位点的准确性可以保持足够高的实际使用,即使整体模型质量不是最优的。随着最近发布的AlphaFold3,我们在测试中包含了这种先进的方法。包含新结构的基准子集,在测试的ML方法的训练中没有使用,显示AlphaFold3的性能与其他基于ML的方法相当,尽管在准确建模配体结合位点方面存在一些挑战。这项研究强调了提高结合位点预测准确性的重要性以及准确建模RNA-配体相互作用的挑战。
    Accurate RNA structure models are crucial for designing small molecule ligands that modulate their functions. This study assesses six standalone RNA 3D structure prediction methods-DeepFoldRNA, RhoFold, BRiQ, FARFAR2, SimRNA and Vfold2, excluding web-based tools due to intellectual property concerns. We focus on reproducing the RNA structure existing in RNA-small molecule complexes, particularly on the ability to model ligand binding sites. Using a comprehensive set of RNA structures from the PDB, which includes diverse structural elements, we found that machine learning (ML)-based methods effectively predict global RNA folds but are less accurate with local interactions. Conversely, non-ML-based methods demonstrate higher precision in modeling intramolecular interactions, particularly with secondary structure restraints. Importantly, ligand-binding site accuracy can remain sufficiently high for practical use, even if the overall model quality is not optimal. With the recent release of AlphaFold 3, we included this advanced method in our tests. Benchmark subsets containing new structures, not used in the training of the tested ML methods, show that AlphaFold 3\'s performance was comparable to other ML-based methods, albeit with some challenges in accurately modeling ligand binding sites. This study underscores the importance of enhancing binding site prediction accuracy and the challenges in modeling RNA-ligand interactions accurately.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    转移RNA(tRNA)是修饰程度最高的细胞RNA,无论是关于在tRNA序列中被修饰的核苷酸的比例,还是关于tRNA修饰化学的非凡多样性。然而,许多不同的tRNA修饰的功能才刚刚开始出现。tRNA具有两个一般的修饰簇。第一个簇位于反密码子茎环内,包括蛋白质翻译所必需的几种修饰。第二组修饰在tRNA肘部内,这些修改的作用不太清楚。总的来说,tRNA肘部修饰通常对细胞生长不是必需的,但尽管如此,一些tRNA肘部修饰在生命的所有领域都是高度保守的。除了形成修改,许多tRNA修饰酶已被证明或假设在折叠tRNA时作为tRNA伴侣发挥重要作用。在这次审查中,我们总结了tRNA修饰酶在整个tRNA分子生命周期中的已知功能,从转录到降解。因此,我们描述了tRNA修饰和折叠tRNA修饰酶如何增强tRNA成熟,tRNA氨基酰化,和tRNA在蛋白质合成过程中的功能,最终影响细胞表型和疾病。
    Transfer RNAs (tRNAs) are the most highly modified cellular RNAs, both with respect to the proportion of nucleotides that are modified within the tRNA sequence and with respect to the extraordinary diversity in tRNA modification chemistry. However, the functions of many different tRNA modifications are only beginning to emerge. tRNAs have two general clusters of modifications. The first cluster is within the anticodon stem-loop including several modifications essential for protein translation. The second cluster of modifications is within the tRNA elbow, and roles for these modifications are less clear. In general, tRNA elbow modifications are typically not essential for cell growth, but nonetheless several tRNA elbow modifications have been highly conserved throughout all domains of life. In addition to forming modifications, many tRNA modifying enzymes have been demonstrated or hypothesized to also play an important role in folding tRNA acting as tRNA chaperones. In this review, we summarize the known functions of tRNA modifying enzymes throughout the lifecycle of a tRNA molecule, from transcription to degradation. Thereby, we describe how tRNA modification and folding by tRNA modifying enzymes enhance tRNA maturation, tRNA aminoacylation, and tRNA function during protein synthesis, ultimately impacting cellular phenotypes and disease.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    体外选择变构核酶有许多挑战,例如复杂而耗时的实验程序,不确定的结果,和富集序列的不想要的功能。使用RNA二级结构折叠原理可以实现变构核酶的精确计算设计。变构核酶的计算设计基于实验验证的EA,随机搜索算法,和RNA折叠的分配函数。在硅设计达到了超过90%的精度。具有不同逻辑门的各种算法已经通过能够快速创建许多变构序列的计算机程序自动化。这可以消除体外选择变构核酶的需要,从而大大减少了所需的时间和成本。
    In vitro selection of allosteric ribozymes has many challenges, such as complex and time-consuming experimental procedures, uncertain results, and the unwanted functionality of the enriched sequences. The precise computational design of allosteric ribozymes is achievable using RNA secondary structure folding principles. The computational design of allosteric ribozymes is based on experimentally validated EAs, random search algorithms, and a partition function for RNA folding. The in silico design achieves an accuracy exceeding 90%. Various algorithms with different logic gates have been automated via computer programs that can quickly create many allosteric sequences. This can eliminate the need for in vitro selection of allosteric ribozymes, thus vastly reducing the time and cost required.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号