Pyramidal neuron

  • 文章类型: Journal Article
    Mecp2敲除(KO)小鼠的社会记忆障碍是由于从腹侧海马(vHIP)到内侧前额叶皮层(mPFC)的单突触投射中的神经元活动改变所致。在这个Rett综合征模型中海马网络是过度活跃的,这种非典型的神经元活动通过这种单突触投射传播到mPFC,导致mPFC网络活动和社交记忆缺陷的改变。然而,在Mecp2KO小鼠中,vHIP锥体神经元(PYR)和mPFCPYR与小白蛋白中间神经元(PV-IN)之间的投射内细胞功能障碍导致社会记忆障碍的潜在机制尚未阐明.我们使用新的4室社交记忆竞技场证实了Mecp2KO小鼠的社交记忆(而不是社交能力)缺陷,旨在最大程度地减少在社交互动过程中同时对Ca2传感器信号进行体内光纤测光所需的束缚对光纤的影响。野生型(WT)小鼠的mPFCPYR在探索新型玩具小鼠以及与熟悉和新型小鼠的相互作用期间显示Ca2信号幅度增加,而Mecp2KO小鼠的PYRs在仅与活小鼠相互作用时显示较小的Ca2+信号。另一方面,与PYR中的信号相比,Mecp2KO小鼠的mPFCPV-INs在与熟悉的笼伴侣相互作用期间显示出更大的Ca2信号,在WT小鼠中不存在差异。这些观察结果表明,在社会互动过程中,Mecp2KO小鼠的mPFC网络中的抑制和兴奋异常增强,可能导致他们在社会记忆中的赤字。
    Social memory impairments in Mecp2 knockout (KO) mice result from altered neuronal activity in the monosynaptic projection from the ventral hippocampus (vHIP) to the medial prefrontal cortex (mPFC). The hippocampal network is hyperactive in this model for Rett syndrome, and such atypically heightened neuronal activity propagates to the mPFC through this monosynaptic projection, resulting in altered mPFC network activity and social memory deficits. However, the underlying mechanism of cellular dysfunction within this projection between vHIP pyramidal neurons (PYR) and mPFC PYRs and parvalbumin interneurons (PV-IN) resulting in social memory impairments in Mecp2 KO mice has yet to be elucidated. We confirmed social memory (but not sociability) deficits in Mecp2 KO mice using a new 4-chamber social memory arena, designed to minimize the impact of the tethering to optical fibers required for simultaneous in vivo fiber photometry of Ca2+-sensor signals during social interactions. mPFC PYRs of wildtype (WT) mice showed increases in Ca2+ signal amplitude during explorations of a novel toy mouse and interactions with both familiar and novel mice, while PYRs of Mecp2 KO mice showed smaller Ca2+ signals during interactions only with live mice. On the other hand, mPFC PV-INs of Mecp2 KO mice showed larger Ca2+ signals during interactions with a familiar cage-mate compared to those signals in PYRs, a difference absent in the WT mice. These observations suggest atypically heightened inhibition and impaired excitation in the mPFC network of Mecp2 KO mice during social interactions, potentially driving their deficit in social memory.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    已知癫痫引起神经网络的改变。然而,这些变化的许多细节仍然知之甚少。这项研究的目的是研究大鼠锂-毛果芸香碱癫痫模型中海马CA1锥体神经元特性及其突触输入的变化。在模型的慢性期,我们在CA1区发现锥体神经元明显丢失。然而,神经元的膜特性基本保持不变。电生理和形态学研究的结果表明,在癫痫动物中,从内嗅皮层到CA1神经元的直接通路得到了增强,而CA3对它们的输入要么不变,要么甚至减少。特别是,str中的树突状脊柱密度。腔隙分子,来自内嗅皮层的直接通路终止于此,癫痫大鼠比对照大鼠高2.5倍。此外,在癫痫大鼠中,刺激时间氨途径后的反应总和增加了大约两倍。这种增强被认为是使用离体4-氨基吡啶模型在癫痫大鼠的内嗅皮层中观察到的癫痫活动增强的重要促成因素。
    Epilepsy is known to cause alterations in neural networks. However, many details of these changes remain poorly understood. The objective of this study was to investigate changes in the properties of hippocampal CA1 pyramidal neurons and their synaptic inputs in a rat lithium-pilocarpine model of epilepsy. In the chronic phase of the model, we found a marked loss of pyramidal neurons in the CA1 area. However, the membrane properties of the neurons remained essentially unaltered. The results of the electrophysiological and morphological studies indicate that the direct pathway from the entorhinal cortex to CA1 neurons is reinforced in epileptic animals, whereas the inputs to them from CA3 are either unaltered or even diminished. In particular, the dendritic spine density in the str. lacunosum moleculare, where the direct pathway from the entorhinal cortex terminates, was found to be 2.5 times higher in epileptic rats than in control rats. Furthermore, the summation of responses upon stimulation of the temporoammonic pathway was enhanced by approximately twofold in epileptic rats. This enhancement is believed to be a significant contributing factor to the heightened epileptic activity observed in the entorhinal cortex of epileptic rats using an ex vivo 4-aminopyridine model.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    Rett综合征(RTT)是由MECP2突变引起的神经发育障碍,它编码甲基CpG结合蛋白2,是许多基因的转录调节因子,包括脑源性神经营养因子(BDNF)。在Mecp2缺陷小鼠的多个脑区,BDNF水平较低,通过实验增加BDNF水平可以改善Mecp2突变小鼠的非典型表型。由于BDNF本身的血脑屏障通透性较低,我们测试了LM22A-4的效果,一种脑渗透剂,BDNF受体TrkB的小分子配体(由Ntrk2编码),对雌性Mecp2杂合(HET)小鼠的海马锥体神经元的树突棘密度和形态以及行为表型的影响。用LM22A-4对Mecp2HET小鼠进行为期4周的全身治疗,将MeCP2表达神经元的脊柱体积恢复到野生型(WT)水平,而缺乏MeCP2的神经元的脊柱体积仍与雌性WT小鼠的神经元相当。雌性Mecp2HET小鼠比WT小鼠更有攻击行为,通过4周的LM22A-4治疗,其水平降低至WT水平。这些数据为新疗法不仅对RTT而且对其他BDNF相关疾病的潜在有用性提供了额外的支持。
    Rett syndrome (RTT) is a neurodevelopmental disorder caused by mutations in MECP2, which encodes methyl-CpG-binding protein 2, a transcriptional regulator of many genes, including brain-derived neurotrophic factor (BDNF). BDNF levels are lower in multiple brain regions of Mecp2-deficient mice, and experimentally increasing BDNF levels improve atypical phenotypes in Mecp2 mutant mice. Due to the low blood-brain barrier permeability of BDNF itself, we tested the effects of LM22A-4, a brain-penetrant, small-molecule ligand of the BDNF receptor TrkB (encoded by Ntrk2), on dendritic spine density and form in hippocampal pyramidal neurons and on behavioral phenotypes in female Mecp2 heterozygous (HET) mice. A 4-week systemic treatment of Mecp2 HET mice with LM22A-4 restored spine volume in MeCP2-expressing neurons to wild-type (WT) levels, whereas spine volume in MeCP2-lacking neurons remained comparable to that in neurons from female WT mice. Female Mecp2 HET mice engaged in aggressive behaviors more than WT mice, the levels of which were reduced to WT levels by the 4-week LM22A-4 treatment. These data provide additional support to the potential usefulness of novel therapies not only for RTT but also to other BDNF-related disorders.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    海马锥体神经元活动是情景记忆和空间导航的基础。尽管在啮齿动物中进行了广泛的研究,对人类海马锥体神经元知之甚少,即使人类海马体经历了强烈的进化重组,并显示出较低的theta节律频率。为了测试人类CornuAmonis子场1(CA1)锥体神经元的生物物理特性是否可以解释观察到的节律,我们绘制了人类个体CA1锥体神经元的形态电特性,来自神经外科的非病理性海马切片。人类CA1锥体神经元的树突树比小鼠CA1锥体神经元大得多,有大量的斜树突,并在2.9Hz处共振,最佳调谐到人类的θ频率。形态和生物物理特性表明细胞多样性沿着多维梯度而不是离散聚类。在整个人口中,与小鼠CA1锥体神经元相比,树突结构和大量的斜树突始终将人类CA1锥体神经元的记忆能力提高了一个数量级。
    Hippocampal pyramidal neuron activity underlies episodic memory and spatial navigation. Although extensively studied in rodents, extremely little is known about human hippocampal pyramidal neurons, even though the human hippocampus underwent strong evolutionary reorganization and shows lower theta rhythm frequencies. To test whether biophysical properties of human Cornu Amonis subfield 1 (CA1) pyramidal neurons can explain observed rhythms, we map the morpho-electric properties of individual CA1 pyramidal neurons in human, non-pathological hippocampal slices from neurosurgery. Human CA1 pyramidal neurons have much larger dendritic trees than mouse CA1 pyramidal neurons, have a large number of oblique dendrites, and resonate at 2.9 Hz, optimally tuned to human theta frequencies. Morphological and biophysical properties suggest cellular diversity along a multidimensional gradient rather than discrete clustering. Across the population, dendritic architecture and a large number of oblique dendrites consistently boost memory capacity in human CA1 pyramidal neurons by an order of magnitude compared to mouse CA1 pyramidal neurons.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    智能动物大脑的一个特征是能够学习以行为上适当的活动神经元输出集合来响应活动神经元输入集合的能力。以前,有人提出了一个关于这种机制是如何在新皮层锥体神经元内的细胞水平上实现的假设:根尖簇或外周输入启动“猜测”神经元发射,而基底树突基于兴奋的突触簇识别输入模式,根据奖励反馈调整集群激励强度。这种简单的机制允许神经元学习以惊人的智能方式对其输入进行分类。这里,我们修改并扩展了这一假设。我们修改了突触可塑性规则,以与在海马区CA1中观察到的行为时标突触可塑性(BTSP)保持一致,从而使框架在生物物理和行为上更加合理。通过与新皮质层1中的顶端簇的反馈连接,以自愿的方式选择用于猜测发射的神经元,从而导致树突状Ca2尖峰,它们被假定为注意力的神经相关性,感知处理。一旦学会,神经元输入分类是在没有自愿或有意识控制的情况下执行的,实现分类的分层增量学习,这在我们固有的可分类世界中是有效的。除了自愿,我们认为锥体神经元的爆发可能是无意识的,也通过根尖簇输入启动,提请注意重要的线索,如新奇和有害的刺激。我们根据新皮层锥体神经元的兴奋途径将其分为四类:注意型与自动型,自愿/获得性与非自愿型。此外,我们假设锥体神经元小柱束内的树突通过去极化交叉感应耦合,启用小列函数,例如创建强大的分层“超神经元”和外部世界的内部表示。我们建议构建模块将微电路理论扩展到网络级处理,which,有趣的是,产生类似于目前使用的人工神经网络的变体。更多的是投机性的,我们推测,由某些类型的物理定律支配的宇宙中的智能原理可能与我们的相似。
    A feature of the brains of intelligent animals is the ability to learn to respond to an ensemble of active neuronal inputs with a behaviorally appropriate ensemble of active neuronal outputs. Previously, a hypothesis was proposed on how this mechanism is implemented at the cellular level within the neocortical pyramidal neuron: the apical tuft or perisomatic inputs initiate \"guess\" neuron firings, while the basal dendrites identify input patterns based on excited synaptic clusters, with the cluster excitation strength adjusted based on reward feedback. This simple mechanism allows neurons to learn to classify their inputs in a surprisingly intelligent manner. Here, we revise and extend this hypothesis. We modify synaptic plasticity rules to align with behavioral time scale synaptic plasticity (BTSP) observed in hippocampal area CA1, making the framework more biophysically and behaviorally plausible. The neurons for the guess firings are selected in a voluntary manner via feedback connections to apical tufts in the neocortical layer 1, leading to dendritic Ca2+ spikes with burst firing, which are postulated to be neural correlates of attentional, aware processing. Once learned, the neuronal input classification is executed without voluntary or conscious control, enabling hierarchical incremental learning of classifications that is effective in our inherently classifiable world. In addition to voluntary, we propose that pyramidal neuron burst firing can be involuntary, also initiated via apical tuft inputs, drawing attention toward important cues such as novelty and noxious stimuli. We classify the excitations of neocortical pyramidal neurons into four categories based on their excitation pathway: attentional versus automatic and voluntary/acquired versus involuntary. Additionally, we hypothesize that dendrites within pyramidal neuron minicolumn bundles are coupled via depolarization cross-induction, enabling minicolumn functions such as the creation of powerful hierarchical \"hyperneurons\" and the internal representation of the external world. We suggest building blocks to extend the microcircuit theory to network-level processing, which, interestingly, yields variants resembling the artificial neural networks currently in use. On a more speculative note, we conjecture that principles of intelligence in universes governed by certain types of physical laws might resemble ours.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    目的:全身麻醉已在外科手术中使用了大约180年,然而,麻醉药物的确切机制仍然难以捉摸。腹侧被盖区(VTA)和前边缘皮层(PrL)之间存在显着的解剖连接。从VTA多巴胺能神经元(VTADA)到PrL的投射在七氟烷麻醉到唤醒的过渡中起作用。尚不确定前边缘皮质锥体细胞神经元(PrLPyr)及其对VTA的投射(PrLPyr-VTA)是否参与麻醉唤醒调节。
    方法:我们利用化学遗传学和光遗传学来选择性操纵PrLPyr-VTA通路中的神经元活性。脑电图谱和爆发抑制率(BSR)用于评估麻醉深度。此外,对正正反射的丧失或恢复进行监测,以提示全身麻醉的诱导或出现时间.为了阐明PrLPyr-VTA投射对麻醉和唤醒的影响中的受体机制,我们将NMDA受体拮抗剂(MK-801)或AMPA受体拮抗剂(NBQX)微注射到VTA中。
    结果:我们的发现表明,PrLPyr神经元的化学遗传或光遗传激活延长了麻醉诱导并促进了出现。此外,PrLPyr-VTA神经通路的化学激活延迟麻醉诱导并促进麻醉苏醒。同样,PrLPyr-VTA投射的光遗传学激活延长了诱导时间并促进了七氟烷麻醉的出现。此外,拮抗VTA中的NMDA受体减弱了延迟的麻醉诱导,并促进了由激活PrLPyr-VTA投射引起的出现。
    结论:这项研究表明,PrLPyr神经元及其对VTA的投射参与促进七氟醚麻醉的出现,PrLPyr-VTA途径通过激活VTA内的NMDA受体发挥其作用。
    General anesthesia has been used in surgical procedures for approximately 180 years, yet the precise mechanism of anesthetic drugs remains elusive. There is significant anatomical connectivity between the ventral tegmental area (VTA) and the prelimbic cortex (PrL). Projections from VTA dopaminergic neurons (VTADA ) to the PrL play a role in the transition from sevoflurane anesthesia to arousal. It is still uncertain whether the prelimbic cortex pyramidal neuron (PrLPyr ) and its projections to VTA (PrLPyr -VTA) are involved in anesthesia-arousal regulation.
    We employed chemogenetics and optogenetics to selectively manipulate neuronal activity in the PrLPyr -VTA pathway. Electroencephalography spectra and burst-suppression ratios (BSR) were used to assess the depth of anesthesia. Furthermore, the loss or recovery of the righting reflex was monitored to indicate the induction or emergence time of general anesthesia. To elucidate the receptor mechanisms in the PrLPyr -VTA projection\'s impact on anesthesia and arousal, we microinjected NMDA receptor antagonists (MK-801) or AMPA receptor antagonists (NBQX) into the VTA.
    Our findings show that chemogenetic or optogenetic activation of PrLPyr neurons prolonged anesthesia induction and promoted emergence. Additionally, chemogenetic activation of the PrLPyr -VTA neural pathway delayed anesthesia induction and promoted anesthesia emergence. Likewise, optogenetic activation of the PrLPyr -VTA projections extended the induction time and facilitated emergence from sevoflurane anesthesia. Moreover, antagonizing NMDA receptors in the VTA attenuates the delayed anesthesia induction and promotes emergence caused by activating the PrLPyr -VTA projections.
    This study demonstrates that PrLPyr neurons and their projections to the VTA are involved in facilitating emergence from sevoflurane anesthesia, with the PrLPyr -VTA pathway exerting its effects through the activation of NMDA receptors within the VTA.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    CA2锥体神经元(PNs)与社会行为相关。机制,然而,还有待充分调查。这里,我们报告Efr3b,一种质膜磷脂代谢必需的蛋白质,在大脑中广泛表达,尤其是在海马CA2/CA3区。为了评估Efr3b在大脑中的功能意义,我们产生了Efr3bf/f小鼠,并将其与Nestin-cre小鼠杂交,以删除大脑中的Efr3b。我们发现大脑中的Efr3b缺乏导致社会新颖性识别和CA2PN的兴奋性不足。然后,我们在C57BL/6J小鼠的CA2PNs中特别降低了Efr3b的表达,我们的结果表明,减少CA2PN中的Efr3b也导致了CA2PN的社会新颖性识别和伪善兴奋性的缺陷。更有趣的是,恢复Efr3b在CA2PNs中的表达可增强其兴奋性,并改善Efr3b缺陷小鼠的社会新颖性识别。此外,用化学遗传学直接激活CA2PNs可改善Efr3b缺陷小鼠的社会行为。一起,我们的数据表明,Efr3b通过调节CA2PN的兴奋性对社会新颖性至关重要.
    CA2 pyramidal neurons (PNs) are associated with social behaviors. The mechanisms, however, remain to be fully investigated. Here, we report that Efr3b, a protein essential for phospholipid metabolism at the plasma membrane, is widely expressed in the brain, especially in the hippocampal CA2/CA3 areas. To assess the functional significance of Efr3b in the brain, we generated Efr3bf/f mice and crossed them with Nestin-cre mice to delete Efr3b specifically in the brain. We find that Efr3b deficiency in the brain leads to deficits of social novelty recognition and hypoexcitability of CA2 PNs. We then knocked down the expression of Efr3b specifically in CA2 PNs of C57BL/6J mice, and our results showed that reducing Efr3b in CA2 PNs also resulted in deficits of social novelty recognition and hypoexcitability of CA2 PNs. More interestingly, restoring the expression of Efr3b in CA2 PNs enhances their excitability and improves social novelty recognition in Efr3b-deficient mice. Furthermore, direct activation of CA2 PNs with chemogenetics improves social behaviors in Efr3b-deficient mice. Together, our data suggest that Efr3b is essential for social novelty by modulating the excitability of CA2 PNs.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    ACh通过相对于邻近的脑内(IT)神经元优先增强第5层锥体束(PT)神经元的突触后兴奋性来促进新皮质向丘脑和脑干的输出。关于ACh如何调节IT和PT神经元的兴奋性突触驱动知之甚少。为了解决这个问题,自发兴奋性突触后电位(sEPSP)记录在成年雌性和雄性小鼠的前边缘皮层切片中IT和PT神经元的双重记录中。ACh(20µM)增强sEPSP振幅,频率,上升时间,和半宽度优先在PT神经元。这些作用被毒蕈碱受体拮抗剂阿托品(1µM)阻断。当用哌仑西平(1µM)攻击时,对M1型毒蕈碱受体有选择性的拮抗剂,ACh反而降低了sEPSP频率,表明ACh通常可以通过非M1受体抑制皮质中的突触传递。PT神经元中sEPSP的胆碱能增强对加巴嗪(10µM)和CGP52432(2.5µM)的GABA受体拮抗作用不敏感,但被河豚毒素(1µM)阻断,表明ACh增强PT神经元中动作电位依赖性兴奋性突触传递。相对于IT-PT和IT-IT配对,ACh还优先促进了PT神经元双重记录中同步sEPSP的发生。最后,表达hM4Di的PT的选择性化学遗传沉默,但不是委员会的IT,神经元阻断了PT神经元中sEPSP振幅和频率的胆碱能增强。这些数据表明,除了选择性增强PT神经元的突触后兴奋性,M1受体激活通过放大PT神经元网络内的复发性兴奋来促进皮质输出。意义陈述乙酰胆碱是一种神经递质,可优先增强靶向脑干的新皮质投射神经元的兴奋性(锥体束,或PT神经元)。本研究在揭示乙酰胆碱也优先增加PT神经元的兴奋性突触驱动方面具有重要意义。药理学和化学遗传学实验表明,乙酰胆碱通过M1型毒蕈碱乙酰胆碱受体起作用,以激活反复连接的PT神经元的网络。因此,乙酰胆碱可能通过平行增加PT神经元的兴奋性突触驱动和突触后兴奋性,使皮质输出偏向脑干和其他皮质下结构。
    Acetylcholine (ACh) promotes neocortical output to the thalamus and brainstem by preferentially enhancing the postsynaptic excitability of layer 5 pyramidal tract (PT) neurons relative to neighboring intratelencephalic (IT) neurons. Less is known about how ACh regulates the excitatory synaptic drive of IT and PT neurons. To address this question, spontaneous excitatory postsynaptic potentials (sEPSPs) were recorded in dual recordings of IT and PT neurons in slices of prelimbic cortex from adult female and male mice. ACh (20 µM) enhanced sEPSP amplitudes, frequencies, rise-times, and half-widths preferentially in PT neurons. These effects were blocked by the muscarinic receptor antagonist atropine (1 µM). When challenged with pirenzepine (1 µM), an antagonist selective for M1-type muscarinic receptors, ACh instead reduced sEPSP frequencies, suggesting that ACh may generally suppress synaptic transmission in the cortex via non-M1 receptors. Cholinergic enhancement of sEPSPs in PT neurons was not sensitive to antagonism of GABA receptors with gabazine (10 µM) and CGP52432 (2.5 µM) but was blocked by tetrodotoxin (1 µM), suggesting that ACh enhances action-potential-dependent excitatory synaptic transmission in PT neurons. ACh also preferentially promoted the occurrence of synchronous sEPSPs in dual recordings of PT neurons relative to IT-PT and IT-IT parings. Finally, selective chemogenetic silencing of hM4Di-expressing PT, but not commissural IT, neurons blocked cholinergic enhancement of sEPSP amplitudes and frequencies in PT neurons. These data suggest that, in addition to selectively enhancing the postsynaptic excitability of PT neurons, M1 receptor activation promotes corticofugal output by amplifying recurrent excitation within networks of PT neurons.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    动作电位通常沿着神经元的轴突直行,从轴突初始段(AIS)向突触前末端。在某些情况下,动作电位也向相反方向传播,抗屈体,在远端位置开始后。鉴于它们是在非典型部位开始的,我们将这些事件称为“异位动作电位”。“异位动作电位(EAP)最初是在包括癫痫发作和神经损伤在内的病理条件下观察到的。一些研究已经描述了在癫痫发作模型中发射EAP的规则尖峰(RS)锥体神经元。在非病理条件下,EAP被报道在少数神经元群体中,我们的研究小组发现,EAP可以在新皮质中大部分表达小清蛋白的中间神经元中诱导。然而,据我们所知,以前没有关于新皮层中最大的神经元群异位放电的报道,锥体神经元,在非病理条件下。
    我们利用全细胞膜片钳技术进行了体外记录。要引发EAP,我们用两种方法触发了直行的电位,逐步增加当前的步骤,或者以30、60或100Hz的短脉冲序列以3种不同的方式传递,刺激和静息期持续时间不同。
    我们发现,来自小鼠的大部分(72.7%)新皮质RS细胞在体外特定刺激后可以激发EAP,并且大多数RS细胞(56.1%)能够在宽范围的刺激条件下激发EAP。在我们能够引发EAP的37个RS神经元中,在第一次EAP出现前,平均约81.4s的时间内,平均产生863.8个直行动作电位.我们观察到一些细胞响应特定的刺激频率,而选择性较低,建议在细胞的子集进行频率调谐。
    我们的发现表明,锥体细胞可以在长时间尺度上整合信息,然后短暂进入起源于远端轴突的自我生成放电模式。RS细胞中EAP生成的令人惊讶的普遍性引发了关于异位尖峰在信息处理中的潜在作用的有趣问题。皮质振荡,和癫痫易感性。
    UNASSIGNED: Action potentials usually travel orthodromically along a neuron\'s axon, from the axon initial segment (AIS) toward the presynaptic terminals. Under some circumstances action potentials also travel in the opposite direction, antidromically, after being initiated at a distal location. Given their initiation at an atypical site, we refer to these events as \"ectopic action potentials.\" Ectopic action potentials (EAPs) were initially observed in pathological conditions including seizures and nerve injury. Several studies have described regular-spiking (RS) pyramidal neurons firing EAPs in seizure models. Under nonpathological conditions, EAPs were reported in a few populations of neurons, and our group has found that EAPs can be induced in a large proportion of parvalbumin-expressing interneurons in the neocortex. Nevertheless, to our knowledge there have been no prior reports of ectopic firing in the largest population of neurons in the neocortex, pyramidal neurons, under nonpathological conditions.
    UNASSIGNED: We performed in vitro recordings utilizing the whole-cell patch clamp technique. To elicit EAPs, we triggered orthodromic action potentialswith either long, progressively increasing current steps, or with trains of brief pulses at 30, 60, or 100 Hz delivered in 3 different ways, varying in stimulus and resting period duration.
    UNASSIGNED: We found that a large proportion (72.7%) of neocortical RS cells from mice can fire EAPs after a specific stimulus in vitro, and that most RS cells (56.1%) are capable of firing EAPs across a broad range of stimulus conditions. Of the 37 RS neurons in which we were able to elicit EAPs, it took an average of 863.8 orthodromic action potentials delivered over the course of an average of ~81.4 s before the first EAP was seen. We observed that some cells responded to specific stimulus frequencies while less selective, suggesting frequency tuning in a subset of the cells.
    UNASSIGNED: Our findings suggest that pyramidal cells can integrate information over long time-scales before briefly entering a mode of self-generated firing that originates in distal axons. The surprising ubiquity of EAP generation in RS cells raises interesting questions about the potential roles of ectopic spiking in information processing, cortical oscillations, and seizure susceptibility.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    大脑可以有效地学习各种各样的任务,激励寻找生物启发的学习规则,以改进当前的人工智能技术。大多数生物模型由点神经元组成,无法在机器学习中实现最先进的性能。最近的工作已经提出,输入隔离(神经元接收感觉信息和高阶反馈在隔离的隔室),非线性树突计算将支持生物神经元中的错误反向传播。然而,这些方法需要将具有良好时空结构的误差传播到所有神经元,这在生物网络中不太可能可行。为了放松这个假设,我们建议爆发和树突输入隔离为基于目标的学习提供了自然的支持,它传播目标而不是错误。基底和顶端隔室之间的重合机制允许产生高频尖峰。此体系结构支持与突发相关的学习规则,基于由教学信号触发的目标爆发活动与由循环连接引起的目标爆发活动之间的比较,为基于目标的学习提供支持。我们证明了这个框架可以有效地解决时空任务,例如三维轨迹的上下文相关存储和回忆,导航任务。最后,我们建议这种神经元结构自然允许编排“分层模仿学习”,能够将具有挑战性的长期决策任务分解为更简单的子任务。我们在两级网络中展示了这一点的可能实现,其中高网络产生低网络的上下文信号。
    The brain can efficiently learn a wide range of tasks, motivating the search for biologically inspired learning rules for improving current artificial intelligence technology. Most biological models are composed of point neurons and cannot achieve state-of-the-art performance in machine learning. Recent works have proposed that input segregation (neurons receive sensory information and higher-order feedback in segregated compartments), and nonlinear dendritic computation would support error backpropagation in biological neurons. However, these approaches require propagating errors with a fine spatiotemporal structure to all the neurons, which is unlikely to be feasible in a biological network. To relax this assumption, we suggest that bursts and dendritic input segregation provide a natural support for target-based learning, which propagates targets rather than errors. A coincidence mechanism between the basal and the apical compartments allows for generating high-frequency bursts of spikes. This architecture supports a burst-dependent learning rule, based on the comparison between the target bursting activity triggered by the teaching signal and the one caused by the recurrent connections, providing support for target-based learning. We show that this framework can be used to efficiently solve spatiotemporal tasks, such as context-dependent store and recall of three-dimensional trajectories, and navigation tasks. Finally, we suggest that this neuronal architecture naturally allows for orchestrating \"hierarchical imitation learning\", enabling the decomposition of challenging long-horizon decision-making tasks into simpler subtasks. We show a possible implementation of this in a two-level network, where the high network produces the contextual signal for the low network.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号