PrimPol

PRIMPOL
  • 文章类型: Journal Article
    PrimPol是通过在DNA损伤和非规范DNA结构的下游重新开始DNA复制而参与DNA损伤耐受途径的人类DNA启动酶。PrimPol与复制蛋白A(RPA)相互作用的活性和对DNA的亲和力。在这项工作中,我们报告PrimPol具有复制茎长度为5-9个碱基对(bp)的DNA发夹的内在能力,但显示DNA合成的明显暂停。RPA通过PrimPol极大地刺激跨越反向DNA重复序列的DNA合成。此外,C端RPA结合基序(RBM)的缺失促进DNA发夹旁路并使其独立于RPA。这项工作支持以下观点:RBM是PrimPol的负调节剂,并且需要其与RPA的相互作用才能实现完全活跃状态。
    PrimPol is a human DNA primase involved in DNA damage tolerance pathways by restarting DNA replication downstream of DNA lesions and non-canonical DNA structures. Activity and affinity to DNA relays on the interaction of PrimPol with replication protein A (RPA). In this work, we report that PrimPol has an intrinsic ability to copy DNA hairpins with a stem length of 5-9 base pairs (bp) but shows pronounced pausing of DNA synthesis. RPA greatly stimulates DNA synthesis across inverted DNA repeats by PrimPol. Moreover, deletion of the C-terminal RPA binding motif (RBM) facilitates DNA hairpin bypass and makes it independent of RPA. This work supports the idea that RBM is a negative regulator of PrimPol and its interaction with RPA is required to achieve the fully active state.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    G-四链体(G4s)在整个基因组中形成并影响重要的细胞过程。它们的失调可以挑战DNA复制叉进展并威胁基因组稳定性。这里,我们证明了双链DNA(dsDNA)转位酶解旋酶样转录因子(HLTF)在响应G4s中的意想不到的作用。我们证明了HLTF,在人类基因组中富含G4s,可以在体外直接展开G4s,并使用这种ATP依赖性转位酶功能来抑制G4在整个细胞周期中的积累。此外,MSH2(结合G4s的MutS异源二聚体的组成部分)和HLTF协同作用以抑制G4积累,限制端粒的替代延长,并促进对G4稳定药物的耐药性。在离散但互补的角色中,当G4s通过抑制引发酶-聚合酶(PrimPol)依赖性的重新引发而稳定时,HLTF会抑制DNA合成。一起,HLTF在G4反应中的独特作用可防止DNA损伤和潜在的诱变复制,从而保护基因组稳定性.
    G-quadruplexes (G4s) form throughout the genome and influence important cellular processes. Their deregulation can challenge DNA replication fork progression and threaten genome stability. Here, we demonstrate an unexpected role for the double-stranded DNA (dsDNA) translocase helicase-like transcription factor (HLTF) in responding to G4s. We show that HLTF, which is enriched at G4s in the human genome, can directly unfold G4s in vitro and uses this ATP-dependent translocase function to suppress G4 accumulation throughout the cell cycle. Additionally, MSH2 (a component of MutS heterodimers that bind G4s) and HLTF act synergistically to suppress G4 accumulation, restrict alternative lengthening of telomeres, and promote resistance to G4-stabilizing drugs. In a discrete but complementary role, HLTF restrains DNA synthesis when G4s are stabilized by suppressing primase-polymerase (PrimPol)-dependent repriming. Together, the distinct roles of HLTF in the G4 response prevent DNA damage and potentially mutagenic replication to safeguard genome stability.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    DNA中碱基的改变构成基因组不稳定性的主要来源。据信碱基改变引发碱基切除修复(BER),产生干扰DNA复制的DNA修复中间体。这里,我们显示基因组尿嘧啶,一种常见的碱基改变,诱导DNA复制应激(RS)而不被BER处理。在没有尿嘧啶DNA糖基化酶(UNG)的情况下,基因组尿嘧啶积累到高水平,DNA复制叉慢下来,PrimPol介导的再灌注增强,在新生DNA中产生单链缺口。UNG缺陷细胞中的ATR抑制阻断尿嘧啶诱导的间隙的修复,增加复制叉崩溃和细胞死亡。值得注意的是,一部分癌细胞上调UNG2以抑制基因组尿嘧啶并限制RS,这些癌细胞对ATR抑制剂和增加基因组尿嘧啶的药物共同治疗过敏。这些结果揭示了未加工的基因组尿嘧啶作为RS的意外来源和癌细胞的可靶向脆弱性。
    Alterations of bases in DNA constitute a major source of genomic instability. It is believed that base alterations trigger base excision repair (BER), generating DNA repair intermediates interfering with DNA replication. Here, we show that genomic uracil, a common type of base alteration, induces DNA replication stress (RS) without being processed by BER. In the absence of uracil DNA glycosylase (UNG), genomic uracil accumulates to high levels, DNA replication forks slow down, and PrimPol-mediated repriming is enhanced, generating single-stranded gaps in nascent DNA. ATR inhibition in UNG-deficient cells blocks the repair of uracil-induced gaps, increasing replication fork collapse and cell death. Notably, a subset of cancer cells upregulates UNG2 to suppress genomic uracil and limit RS, and these cancer cells are hypersensitive to co-treatment with ATR inhibitors and drugs increasing genomic uracil. These results reveal unprocessed genomic uracil as an unexpected source of RS and a targetable vulnerability of cancer cells.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    PrimPol是一种人类DNA引发酶聚合酶,可在DNA损伤和阻断复制的非BDNA结构之外重新开始DNA合成。PrimPol在细胞中的功能障碍导致线粒体和细胞核中DNA复制速率减慢,染色体畸变的积累,细胞周期延迟,和提高对DNA损伤剂的敏感性。有缺陷的PrimPol已被认为与眼科疾病的发展有关,抗病毒药物的线粒体毒性升高和细胞对化疗的耐药性增加。这里,我们描述了一种罕见的错义PrimPol变异体V102A,在卵巢癌和宫颈癌患者中发现其生化特性改变。Val102到Ala的取代显着降低了PrimPol的引发酶和DNA聚合酶活性,并特异性降低了其掺入核糖核苷酸的能力。结构分析表明,V102A取代可以使邻近活性位点的疏水口袋不稳定,影响dNTP结合和催化。
    PrimPol is a human DNA primase-polymerase which restarts DNA synthesis beyond DNA lesions and non-B DNA structures blocking replication. Disfunction of PrimPol in cells leads to slowing of DNA replication rates in mitochondria and nucleus, accumulation of chromosome aberrations, cell cycle delay, and elevated sensitivity to DNA-damaging agents. A defective PrimPol has been suggested to be associated with the development of ophthalmic diseases, elevated mitochondrial toxicity of antiviral drugs and increased cell resistance to chemotherapy. Here, we describe a rare missense PrimPol variant V102A with altered biochemical properties identified in patients suffering from ovarian and cervical cancer. The Val102 to Ala substitution dramatically reduced both the primase and DNA polymerase activities of PrimPol as well as specifically decreased its ability to incorporate ribonucleotides. Structural analysis indicates that the V102A substitution can destabilize the hydrophobic pocket adjacent to the active site, affecting dNTP binding and catalysis.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    肿瘤抑制基因BRCA2在同源定向修复(HDR)中的作用,保护停滞的复制叉,以及抑制复制性差距,但是它们对基因组完整性和化疗反应的相对贡献正在受到审查。这里,我们报告说,小鼠和人类细胞需要BRCA2中的RAD51细丝稳定基序来保护叉子和抑制间隙,但不需要HDR。在老鼠身上,叉保护/间隙抑制的丧失不会损害基因组稳定性或缩短肿瘤潜伏期。相比之下,HDR缺乏增加自发和复制应激诱导的染色体畸变和肿瘤易感性。与HDR不同,在Brca2杂合细胞中也观察到叉保护/间隙抑制缺陷,可能是由于RAD51在失速叉/间隙处的稳定性降低。差距来自PRIMPOL活动,由于SMUG1产生的脱碱基位点的形成,它与5-羟甲基-2'-脱氧尿苷敏感性相关,并因聚(ADP-核糖)聚合酶(PARP)抑制而加剧。然而,HDR熟练程度在减轻对化学疗法的敏感性方面具有主要作用,包括PARP抑制剂。
    Tumor suppressor BRCA2 functions in homology-directed repair (HDR), the protection of stalled replication forks, and the suppression of replicative gaps, but their relative contributions to genome integrity and chemotherapy response are under scrutiny. Here, we report that mouse and human cells require a RAD51 filament stabilization motif in BRCA2 for fork protection and gap suppression but not HDR. In mice, the loss of fork protection/gap suppression does not compromise genome stability or shorten tumor latency. By contrast, HDR deficiency increases spontaneous and replication stress-induced chromosome aberrations and tumor predisposition. Unlike with HDR, fork protection/gap suppression defects are also observed in Brca2 heterozygous cells, likely due to reduced RAD51 stabilization at stalled forks/gaps. Gaps arise from PRIMPOL activity, which is associated with 5-hydroxymethyl-2\'-deoxyuridine sensitivity due to the formation of SMUG1-generated abasic sites and is exacerbated by poly(ADP-ribose) polymerase (PARP) inhibition. However, HDR proficiency has the major role in mitigating sensitivity to chemotherapeutics, including PARP inhibitors.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    人DNA引物酶/聚合酶PrimPol在DNA损伤位点复制叉停滞后从头合成DNA引物,从而有助于DNA损伤耐受性。PrimPol在响应不同类型的DNA损伤中的作用知之甚少。我们在肺癌A549细胞系中敲除了PRIMPOL基因,并表征了获得的细胞对过氧化氢引起的DNA损伤的反应,甲磺酸甲酯(MMS),顺铂,博来霉素,和电离辐射。PRIMPOL敲除减少了用MMS处理后的增殖细胞和G2期细胞的数量,并在顺铂处理的细胞中引起了更明显的S期延迟。剂量为10Gy的电离辐射显着增加了PRIMPOL缺陷细胞中凋亡细胞的含量,而在任何辐射剂量下,亲代细胞和敲除细胞中经历坏死的细胞比例都增加。与对照细胞相比,在过氧化氢诱导的氧化应激下,PRIMPOL缺陷细胞的生存力增加,通过甲基四唑(MTT)测定法测定。获得的数据表明PRIMPOL参与调节对各种类型的基因毒性应激的适应性细胞反应。
    Human DNA primase/polymerase PrimPol synthesizes DNA primers de novo after replication fork stalling at the sites of DNA damage, thus contributing to the DNA damage tolerance. The role of PrimPol in response to the different types of DNA damage is poorly understood. We knocked out the PRIMPOL gene in the lung carcinoma A549 cell line and characterized the response of the obtained cells to the DNA damage caused by hydrogen peroxide, methyl methanesulfonate (MMS), cisplatin, bleomycin, and ionizing radiation. The PRIMPOL knockout reduced the number of proliferating cells and cells in the G2 phase after treatment with MMS and caused a more pronounced delay of the S phase in the cisplatin-treated cells. Ionizing radiation at a dose of 10 Gy significantly increased the content of apoptotic cells among the PRIMPOL-deficient cells, while the proportion of cells undergoing necroptosis increased in both parental and knockout cells at any radiation dose. The viability of PRIMPOL-deficient cells upon the hydrogen peroxide-induced oxidative stress increased compared to the control cells, as determined by the methyl tetrazolium (MTT) assay. The obtained data indicate the involvement of PRIMPOL in the modulation of adaptive cell response to various types of genotoxic stress.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    为了促进DNA损伤耐受性的真核激活途径,PrimPol在聚合酶停滞障碍的下游合成从头寡核苷酸引物。这些引物使复制聚合酶能够恢复合成以确保及时完成DNA复制。从头开始合成需要单链DNA的协调,起始核苷酸,和PrimPol活性位点内的金属离子催化第一个磷酸二酯键的形成。在这里,我们研究人类PrimPol的催化结构域之间的相互作用,核苷酸,和DNA模板在每个催化步骤中确定引物合成的“编排”,其中底物以有序的方式结合。我们的发现表明,PrimPol进行从头引物合成的能力是由酶之间稳定相互作用的网络支撑的。模板,和核苷酸,正如我们之前观察到的相关启动酶CRISPR相关的Prim-Pol(CAPP)。一起,这些发现为人类PrimPol启动DNA合成建立了详细的模型,看起来非常保守。
    To facilitate the eukaryotic repriming pathway of DNA damage tolerance, PrimPol synthesises de novo oligonucleotide primers downstream of polymerase-stalling obstacles. These primers enable replicative polymerases to resume synthesis and ensure the timely completion of DNA replication. Initiating synthesis de novo requires the coordination of single-stranded DNA, initiating nucleotides, and metal ions within PrimPol\'s active site to catalyze the formation of the first phosphodiester bond. Here we examine the interactions between human PrimPol\'s catalytic domain, nucleotides, and DNA template during each of the various catalytic steps to determine the \'choreography\' of primer synthesis, where substrates bind in an ordered manner. Our findings show that the ability of PrimPol to conduct de novo primer synthesis is underpinned by a network of stabilising interactions between the enzyme, template, and nucleotides, as we previously observed for related primase CRISPR-Associated Prim-Pol (CAPP). Together, these findings establish a detailed model for the initiation of DNA synthesis by human PrimPol, which appears highly conserved.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    进化研究通常识别在不同生物体之间交换的基因,在这种情况下经常使用短语横向或横向基因转移。然而,他们很少提供有关这些基因转移如何发生的任何机械信息。在过去的二三十年中,公共数据库中的序列数量惊人地增加,已经在许多不同的序列环境中鉴定了相同的抗生素抗性基因。对此的一种解释是,基因最初是通过转座子传播的,转座子随后衰减,无法再检测到。这里,我们提供了一种蛋白质的概述,观察到IEE(插入序列切除增强剂)可促进从临床上重要的大肠杆菌O157:H7中高频切除IS629,随后显示可影响一大类细菌插入序列,这些序列均使用复制粘贴转座机制进行转座。切除取决于IEE和转座酶两者,表明与转座过程本身的关联。我们回顾了遗传和生化数据,并建议IEE通过去除侧翼插入序列(IS)拷贝来固定复合转座子携带的基因。IEE作为具有识别DNA微同源性能力的启动酶的生化活性,并且观察到其作用似乎仅限于使用copy-out-paste-in转座的IS家族,提示IS缺失是通过在复制步骤中涉及链转换(引物入侵)的失败转座而发生的。这加强了为理解复合转座子Tn6330中mcr-1侧翼的ISApl1的普遍现象丢失而提出的建议,我们用详细的模型进行了说明。该模型还提供了一种令人信服的方式来解释高水平的IEE诱导的精确IS切除。
    Evolutionary studies often identify genes that have been exchanged between different organisms and the phrase Lateral or Horizontal Gene Transfer is often used in this context. However, they rarely provide any mechanistic information concerning how these gene transfers might have occurred. With the astonishing increase in the number of sequences in public databases over the past two or three decades, identical antibiotic resistance genes have been identified in many different sequence contexts. One explanation for this would be that genes are initially transmitted by transposons which have subsequently decayed and can no longer be detected. Here, we provide an overview of a protein, IEE (Insertion Sequence Excision Enhancer) observed to facilitate high-frequency excision of IS629 from clinically important Escherichia coli O157:H7 and subsequently shown to affect a large class of bacterial insertion sequences which all transpose using the copy-out-paste-in transposition mechanism. Excision depends on both IEE and transposase indicating association with the transposition process itself. We review genetic and biochemical data and propose that IEE immobilizes genes carried by compound transposons by removing the flanking insertion sequence (IS) copies. The biochemical activities of IEE as a primase with the capacity to recognize DNA microhomologies and the observation that its effect appears restricted to IS families which use copy-out-paste-in transposition, suggests IS deletion occurs by abortive transposition involving strand switching (primer invasion) during the copy-out step. This reinforces the proposal made for understanding the widespread phenomenon loss of ISApl1 flanking mcr-1 in the compound transposon Tn6330 which we illustrate with a detailed model. This model also provides a convincing way to explain the high levels of IEE-induced precise IS excision.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    转录DNA合成(TLS)通过使用专门的DNA聚合酶来促进在受损或难以复制的模板上的复制。我们研究了三种主要TLS控制机制对自发诱变的影响:招募TLS聚合酶的REV1和PCNA泛素化以及产生复制后缺口的PRIMPOL。使用培养的人RPE-1细胞克隆的全基因组测序,我们发现REV1和聚合酶ζ完全负责碱基置换诱变的一个组成部分,类似于同源重组缺陷,而在PRIMPOL-/-细胞中,接近氧化诱变的其余成分减少。短重复序列中的小缺失出现在REV1-/-PCNAK164R/K164R双突变体中,揭示了一种替代的TLS机制。此外,在REV1-/-和REV3L-/-突变体中出现500-5,000bp的缺失,在REV1-/-PRIMPOL-/-细胞中可检测到染色体不稳定性。我们的结果表明,TLS保护基因组免受缺失和大的重排,代价是负责大多数自发碱基替换。
    Translesion DNA synthesis (TLS) facilitates replication over damaged or difficult-to-replicate templates by employing specialized DNA polymerases. We investigate the effect on spontaneous mutagenesis of three main TLS control mechanisms: REV1 and PCNA ubiquitylation that recruit TLS polymerases and PRIMPOL that creates post-replicative gaps. Using whole-genome sequencing of cultured human RPE-1 cell clones, we find that REV1 and Polymerase ζ are wholly responsible for one component of base substitution mutagenesis that resembles homologous recombination deficiency, whereas the remaining component that approximates oxidative mutagenesis is reduced in PRIMPOL-/- cells. Small deletions in short repeats appear in REV1-/-PCNAK164R/K164R double mutants, revealing an alternative TLS mechanism. Also, 500-5,000 bp deletions appear in REV1-/- and REV3L-/- mutants, and chromosomal instability is detectable in REV1-/-PRIMPOL-/- cells. Our results indicate that TLS protects the genome from deletions and large rearrangements at the expense of being responsible for the majority of spontaneous base substitutions.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    直接递送治疗基因是治疗癌症和其他疾病的有希望的方法。目前的人类病毒载体,然而,有几个缺点,包括细胞类型特异性差和难以大规模生产。M13噬菌体为基因治疗提供了一种替代载体,具有可工程的特异性,但是低的转导效率严重限制了其翻译应用。在这项工作中,我们发现了影响噬菌体转导的细胞和噬菌体的重要因素。细胞中PrimPol的上调或DMBT1的下调显著增强了噬菌体转导效率。此外,我们发现噬菌体转导效率与噬菌体大小呈负相关。通过用感兴趣的基因仔细重建噬菌体起源,我们设计了具有最小长度和最大转导效率的“TransPhage”。我们表明,Transpage成功地转导了人类细胞,其效率与腺相关病毒载体相当或优于腺相关病毒载体。此外,我们发现Transpage的嗜性是特异于过表达靶抗原的细胞,而腺相关病毒(AAV)混杂感染许多细胞类型。使用TransPhage作为基因治疗工具,我们发明了一种NK细胞介导的免疫疗法,其中将膜结合片段可结晶区引入癌细胞.我们在体外表明,表达膜结合片段可结晶(Fc)的癌细胞通过抗体依赖性细胞介导的细胞毒性(ADCC)样机制被CD16NK细胞有效杀死。在异种移植小鼠模型中,施用携带膜结合的Fc基因的TransPhage极大地抑制了肿瘤生长。
    Direct delivery of therapeutic genes is a promising approach for treating cancers and other diseases. The current human viral vectors, however, suffer from several drawbacks, including poor cell-type specificity and difficult large-scale production. The M13 phage provides an alternative vehicle for gene therapy with engineerable specificity, but the low transduction efficiency seriously limits its translational application. In this work, we discovered important factors of cells and phages that greatly influence the phage transduction. The up-regulation of PrimPol or the down-regulation of DMBT1 in cells significantly enhanced the phage transduction efficiency. Furthermore, we found that the phage transduction efficiency was inversely correlated with the phage size. By carefully reconstructing the phage origin with the gene of interest, we designed \"TransPhage\" with a minimal length and maximal transduction efficiency. We showed that TransPhage successfully transduced the human cells with an excellent efficiency (up to 95%) comparable to or superior to that of the adeno-associated virus vectors. Moreover, we showed that TransPhage\'s tropism was specific to the cells that overexpress the target antigen, whereas adeno-associated viruses (AAVs) promiscuously infected many cell types. Using TransPhage as a gene therapy vehicle, we invented an NK-cell-mediated immunotherapy in which a membrane-bound fragment crystallizable region was introduced to cancer cells. We showed in vitro that the cancer cells expressing the membrane-bound fragment crystallizable (Fc) were effectively killed by CD16+ NK cells through an antibody-dependent cell-mediated cytotoxicity (ADCC)-like mechanism. In the xenograft mouse model, the administration of TransPhage carrying the membrane-bound Fc gene greatly suppressed tumor growth.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号