Prenyltransferase

前酰转移酶
  • 文章类型: Journal Article
    This study highlights the significance of overexpressing 1-deoxy-d-xylulose-5-phosphate synthase (DXS) from the MEP (methylerythritol 4-phosphate) pathway, in addition to short-chain prenyltransferase fusions for the improved production of the diterpene, taxa-4,11-diene, the first committed intermediate in the production of anti-cancer drug paclitaxel. The results showed that the strain which has (i) the taxadiene synthase (txs) gene integrated into the genome, (ii) the MEP pathway genes overexpressed, (iii) the fpps-crtE prenyltransferases fusion protein and (iv) additional expression of 1-deoxy-d-xylulose-5-phosphate synthase (DXS), yielded the highest production of taxa-4,11-diene at 390mg/L (26mg/L/OD600). This represents a thirteen-fold increase compared to the highest reported concentration in B. subtilis. The focus on additional overexpression of DXS and utilizing short-chain prenyltransferase fusions underscores their pivotal role in achieving significant titer improvements in terpene biosynthesis.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    Prenyl类黄酮由于其多样化的生物活性和潜在的健康益处而成为食品添加剂和功能性食品的有希望的候选物。然而,天然异戊烯类黄酮通常以低丰度存在并且限于特定的植物物种。这里,我们报道了重组大肠杆菌从柚皮素和烯醇生物合成甘草黄酮。通过研究大肠杆菌中过表达的7种不同来源的异戊二烯基转移酶对各种类黄酮底物的活性,当柚皮素用作异戊烯基受体时,异戊烯基转移酶AnaPT表现出底物偏好。此外,通过在重组大肠杆菌中偶联异戊烯醇利用途径和AnaPT,成功地实现了甘草黄酮的生产。此外,发酵温度的影响,感应温度,柚皮素浓度,研究了重组大肠杆菌中甘草黄酮的生物合成和底物喂养策略。因此,能够改善二甲基烯丙基二磷酸(DMAPP)供应并适合异戊二烯类黄酮生物合成的重组大肠杆菌菌株在摇瓶中将甘草黄酮滴度提高到142.1mg/L,在1.3L发酵罐中将甘草黄酮滴度提高到537.8mg/L,这是迄今为止报道的任何异戊二烯类黄酮的最高产量。本研究提出的策略为启动高价值戊烯基黄酮的生产提供了参考。
    Prenylflavonoids are promising candidates for food additives and functional foods due to their diverse biological activities and potential health benefits. However, natural prenylflavonoids are generally present in low abundance and are limited to specific plant species. Here, we report the biosynthesis of licoflavanone from naringenin and prenol by recombinant Escherichia coli. By investigating the activities of seven different sources of prenyltransferases overexpressed in E. coli toward various flavonoid substrates, the prenyltransferase AnaPT exhibits substrate preference when naringenin serves as the prenyl acceptor. Furthermore, licoflavanone production was successfully achieved by coupling the isopentenol utilization pathway and AnaPT in recombinant E. coli. In addition, the effects of fermentation temperatures, induction temperatures, naringenin concentrations, and substrate feeding strategies were investigated on the biosynthesis of licoflavanone in recombinant E. coli. Consequently, the recombinant E. coli strain capable of improved dimethylallyl diphosphate (DMAPP) supply and suitable for prenylflavonoid biosynthesis increased licoflavanone titers to 142.1 mg/L in a shake flask and to 537.8 mg/L in a 1.3 L fermentor, which is the highest yield for any prenylflavonoids reported to date. These strategies proposed in this study provide a reference for initiating the production of high-value prenylflavonoids.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    在不同生物体的次级代谢产物中广泛观察到肽的丙炔化,赋予肽独特的化学性质不同于蛋白质氨基酸。异戊二烯化肽试剂的发现很大程度上依赖于天然存在的分子的分离或基因组挖掘。设计一种平台技术,用于从头发现靶向选择的蛋白质的人工异戊烯化肽,在这里,我们集成了硫醚-大环肽(teMP)文库构建/选择技术,所谓的RaPID(随机非标准肽集成发现)系统,Trp-C3-异戊二烯基转移酶KgpF参与异戊二烯化天然产物的生物合成。这种独特的酶表现出非常广泛的底物耐受性,能够修饰各种含Trp的teMPs以安装具有三环约束结构的异戊二烯化残基。我们构建了一个庞大的异戊二烯化teMPs文库,并对其进行了针对磷酸甘油酸变位酶的体外选择。该选择平台已导致鉴定假天然异戊烯化的teMP以30nM的IC50抑制目标酶。重要的是,戊烯化对抑制活性至关重要,增强血清稳定性,和细胞对肽的摄取,强调肽异戊二烯化的好处。这项工作展示了伪天然异戊二烯化肽的从头发现平台,这很容易适用于其他药物靶标。
    Prenylation of peptides is widely observed in the secondary metabolites of diverse organisms, granting peptides unique chemical properties distinct from proteinogenic amino acids. Discovery of prenylated peptide agents has largely relied on isolation or genome mining of naturally occurring molecules. To devise a platform technology for de novo discovery of artificial prenylated peptides targeting a protein of choice, here we have integrated the thioether-macrocyclic peptide (teMP) library construction/selection technology, so-called RaPID (Random nonstandard Peptides Integrated Discovery) system, with a Trp-C3-prenyltransferase KgpF involved in the biosynthesis of a prenylated natural product. This unique enzyme exhibited remarkably broad substrate tolerance, capable of modifying various Trp-containing teMPs to install a prenylated residue with tricyclic constrained structure. We constructed a vast library of prenylated teMPs and subjected it to in vitro selection against a phosphoglycerate mutase. This selection platform has led to the identification of a pseudo-natural prenylated teMP inhibiting the target enzyme with an IC50 of 30 nM. Importantly, the prenylation was essential for the inhibitory activity, enhanced serum stability, and cellular uptake of the peptide, highlighting the benefits of peptide prenylation. This work showcases the de novo discovery platform for pseudo-natural prenylated peptides, which is readily applicable to other drug targets.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    呋喃香豆素(FCs)是高等植物中广泛分布的次生代谢产物,包括伞形科,芦荟科,桑科,和豆科。它们在植物的生理功能中起着至关重要的作用,并且以其多种药理活性而闻名。作为伞形科的代表植物,当归因其药用特性而备受重视,FCs是当归的主要成分之一。然而,FCs的生物合成机制尚不清楚。在这项研究中,利用基因组分析和体外功能验证,完成了中华绒螯蟹FCs核心骨架的生物合成。它包括负责伞形酮形成的对香豆酰基CoA2'-羟化酶(AsC2'H),两种UbiA异戊烯基转移酶(AsPT1和AsPT2)将伞形酮转化为去甲基亚奥罗素(DMS)和骨酚,分别,和两个CYP736亚家族环化酶(AsDC和AsOD),它们催化FCs核心骨架的形成。有趣的是,AsOD被证明是一种双功能环化酶,可以催化DMS和骨酚,但对骨酚有更高的亲和力。这些酶的表征阐明了FCs生物合成的分子机制,为理解FCs生物合成的不同起源提供新的见解和技术。
    Furanocoumarins (FCs) are widely distributed secondary metabolites found in higher plants, including Apiaceae, Rutaceae, Moraceae, and Fabaceae. They play a crucial role in the physiological functions of plants and are well-known for their diverse pharmacological activities. As a representative plant of the Apiaceae family, Angelica sinensis is highly valued for its medicinal properties and FCs are one of the main ingredients of A. sinensis. However, the biosynthetic mechanism of FCs in A. sinensis remains poorly understood. In this study, we successfully cloned and verified three types of enzymes using genome analysis and in vitro functional verification, which complete the biosynthesis of the FCs core skeleton in A. sinensis. It includes a p-coumaroyl CoA 2\'-hydroxylase (AsC2\'H) responsible for umbelliferone formation, two UbiA prenyltransferases (AsPT1 and AsPT2) that convert umbelliferone to demethylsuberosin (DMS) and osthenol, respectively, and two CYP736 subfamily cyclases (AsDC and AsOD) that catalyze the formation of FCs core skeleton. Interestingly, AsOD was demonstrated to be a bifunctional cyclase and could catalyze both DMS and osthenol, but had a higher affinity to osthenol. The characterization of these enzymes elucidates the molecular mechanism of FCs biosynthesis, providing new insights and technologies for understanding the diverse origins of FCs biosynthesis.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    在天然产物的多样化和生物活性中起着关键作用。本研究提出了TolF的功能表征,来自Tolypocladiuminflatum的多种异戊二烯基转移酶。tolF在米曲霉中的异源表达,再加上用帕西林喂养转化的菌株,导致生产20-和22-异戊烯基帕西林。此外,TolF展示了戊烯化还原形式的帕索林的能力,β-帕西三醇。来自Chaunopycnisalba的相关异戊烯基转移酶TerF,表现出相似的底物耐受性和区域选择性。使用纯化的重组酶TolF和TerF进行的体外酶测定证实了它们催化帕索林异戊二烯化的能力,β-帕西三醇,和terpendoleI根据以前的报告,terpendole我应该被认为是天然底物。这项工作不仅增强了我们对吲哚二萜生物合成中异戊二烯化反应的分子基础和产物多样性的理解,而且还提供了有关真菌吲哚二萜戊烯基转移酶改变其戊烯化位置特异性的潜力的见解。这可能适用于工业上有用的化合物的合成,包括生物活性化合物,从而为开发新的生物合成策略和药物开辟了新的途径。关键点:•该研究将TolF表征为来自Tolypocladiuminflatum的多重异戊烯基转移酶。•与TolF相比,来自Chaunopycnisalba的TerF显示出相似的底物耐受性和区域选择性。•该研究提供了对真菌吲哚二萜异戊二烯基转移酶的潜在应用的见解。
    Prenylation plays a pivotal role in the diversification and biological activities of natural products. This study presents the functional characterization of TolF, a multiple prenyltransferase from Tolypocladium inflatum. The heterologous expression of tolF in Aspergillus oryzae, coupled with feeding the transformed strain with paxilline, resulted in the production of 20- and 22-prenylpaxilline. Additionally, TolF demonstrated the ability to prenylated the reduced form of paxilline, β-paxitriol. A related prenyltransferase TerF from Chaunopycnis alba, exhibited similar substrate tolerance and regioselectivity. In vitro enzyme assays using purified recombinant enzymes TolF and TerF confirmed their capacity to catalyze prenylation of paxilline, β-paxitriol, and terpendole I. Based on previous reports, terpendole I should be considered a native substrate. This work not only enhances our understanding of the molecular basis and product diversity of prenylation reactions in indole diterpene biosynthesis, but also provides insights into the potential of fungal indole diterpene prenyltransferase to alter their position specificities for prenylation. This could be applicable for the synthesis of industrially useful compounds, including bioactive compounds, thereby opening up new avenues for the development of novel biosynthetic strategies and pharmaceuticals. KEY POINTS: • The study characterizes TolF as a multiple prenyltransferase from Tolypocladium inflatum. • TerF from Chaunopycnis alba shows similar substrate tolerance and regioselectivity compared to TolF. • The research offers insights into the potential applications of fungal indole diterpene prenyltransferases.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    蒽醌是天然醌中最大的一组,它们被用作安全的天然染料,并具有许多药物应用。在植物中,蒽醌通过两种主要途径生物合成:聚酮途径和莽草酸途径。后者主要形成茜素型蒽醌,1,4-二羟基-2-萘甲酸的异戊二烯化是第一个途径特异性步骤。然而,负责这一关键步骤的异戊烯基转移酶仍未表征。在这项研究中,Madder(Rubiacordifolia)的细胞悬浮培养,富含茜素型蒽醌的植物,被发现能够使1,4-二羟基-2-萘甲酸异戊二烯化形成2-羧基-3-异戊二烯基-1,4-萘醌和3-异戊二烯基-1,4-萘醌。然后,属于UbiA超家族的候选基因,R.Cordifolia二甲基烯丙基转移酶1(RcDT1),被证明是戊烯化活动的原因。底物特异性研究表明,重组RcDT1主要识别萘甲酸,其次是4-羟基苯甲酸。1,2-和1,4-二羟基萘强烈抑制了异戊二烯化活性。RcDT1RNA干扰显着降低了R.cordifolia愈伤组织培养物中的蒽醌含量,证明RcDT1是茜素型蒽醌生物合成所必需的。质体定位和根特异性表达进一步证实了RcDT1参与蒽醌生物合成。RcDT1的系统发育分析和其红质同系物的功能验证表明,DHNA-异戊二烯化活性通过泛醌生物合成途径的募集在茜草科中趋同进化。我们的结果表明,RcDT1催化紫花苜蓿茜素型蒽醌生物合成的第一个途径特异性步骤。这些发现将对理解源自莽草酸途径的蒽醌环的生物合成过程具有深远的意义。
    Anthraquinones constitute the largest group of natural quinones, which are used as safe natural dyes and have many pharmaceutical applications. In plants, anthraquinones are biosynthesized through two main routes: the polyketide pathway and the shikimate pathway. The latter primarily forms alizarin-type anthraquinones, and the prenylation of 1,4-dihydroxy-2-naphthoic acid is the first pathway-specific step. However, the prenyltransferase responsible for this key step remains uncharacterized. In this study, the cell suspension culture of Madder (Rubia cordifolia), a plant rich in alizarin-type anthraquinones, was discovered to be capable of prenylating 1,4-dihydroxy-2-naphthoic acid to form 2-carboxyl-3-prenyl-1,4-naphthoquinone and 3-prenyl-1,4-naphthoquinone. Then, a candidate gene belonging to the UbiA superfamily, R. cordifolia  dimethylallyltransferase 1 (RcDT1), was shown to account for the prenylation activity. Substrate specificity studies revealed that the recombinant RcDT1 recognized naphthoic acids primarily, followed by 4-hydroxyl benzoic acids. The prenylation activity was strongly inhibited by 1,2- and 1,4-dihydroxynaphthalene. RcDT1 RNA interference significantly reduced the anthraquinones content in R. cordifolia callus cultures, demonstrating that RcDT1 is required for alizarin-type anthraquinones biosynthesis. The plastid localization and root-specific expression further confirmed the participation of RcDT1 in anthraquinone biosynthesis. The phylogenetic analyses of RcDT1 and functional validation of its rubiaceous homologs indicated that DHNA-prenylation activity evolved convergently in Rubiaceae via recruitment from the ubiquinone biosynthetic pathway. Our results demonstrate that RcDT1 catalyzes the first pathway-specific step of alizarin-type anthraquinones biosynthesis in R. cordifolia. These findings will have profound implications for understanding the biosynthetic process of the anthraquinone ring derived from the shikimate pathway.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    CsPT4是一种合成大麻酚酸(CBGA)的芳香族异戊烯基转移酶,大麻中大麻素生物合成的关键中间体,来自橄榄酸(OA)和香叶基二磷酸(3GPP)。CsPT4具有催化潜力,通过具有间苯二酸骨架的芳族底物的区域选择性C-异戊二烯化产生多种CBGA类似物,所述间苯二酸骨架包括二苄基2,4-二羟基-6-苯基乙基苯甲酸(DPA)。在这项研究中,我们进一步研究了使用苯丙苯酮(PCP)和2'的CsPT4的底物特异性,4\',6\'-三羟基二氢查耳酮(THDC),OA和DPA的异构体,分别,并证明CsPT4在共享酰基间苯三酚亚结构的PCP和THDC上同时催化C-戊烯化和O-戊烯化反应。有趣的是,这些底物的CsPT4的动力学参数取决于它们是否经历了C-戊烯化或O-戊烯化,这表明该酶利用了适用于各个反应的不同底物结合模式。催化O-戊烯化的芳香异戊烯基转移酶在植物界中很少见,CsPT4在改变C-和O-异戊二烯化之间的反应特异性方面是值得注意的,这取决于芳香族底物的骨架。我们还证明了酶促合成的香叶酰化的酰基间苯三酚对PANC-1人胰腺癌细胞具有有效的抗紧缩活性,4'-O-香叶基THDC是最有效的。我们建议CsPT4是产生可能是抗癌先导化合物的生物活性C-和O-异戊二烯化分子的有价值的催化剂。
    CsPT4 is an aromatic prenyltransferase that synthesizes cannabigerolic acid (CBGA), the key intermediate of cannabinoid biosynthesis in Cannabis sativa, from olivetolic acid (OA) and geranyl diphosphate (GPP). CsPT4 has a catalytic potential to produce a variety of CBGA analogs via regioselective C-prenylation of aromatic substrates having resorcylic acid skeletons including bibenzyl 2,4-dihydroxy-6-phenylethylbenzoic acid (DPA). In this study, we further investigated the substrate specificity of CsPT4 using phlorocaprophenone (PCP) and 2\',4\',6\'-trihydroxydihydrochalcone (THDC), the isomers of OA and DPA, respectively, and demonstrated that CsPT4 catalyzed both C-prenylation and O-prenylation reactions on PCP and THDC that share acylphloroglucinol substructures. Interestingly, the kinetic parameters of CsPT4 for these substrates differed depending on whether they underwent C-prenylation or O-prenylation, suggesting that this enzyme utilized different substrate-binding modes suitable for the respective reactions. Aromatic prenyltransferases that catalyze O-prenylation are rare in the plant kingdom, and CsPT4 was notable for altering the reaction specificity between C- and O-prenylations depending on the skeletons of aromatic substrates. We also demonstrated that enzymatically synthesized geranylated acylphloroglucinols had potent antiausterity activity against PANC-1 human pancreatic cancer cells, with 4\'-O-geranyl THDC being the most effective. We suggest that CsPT4 is a valuable catalyst to generate biologically active C- and O-prenylated molecules that could be anticancer lead compounds.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    戊烯酰转移酶催化戊烯化黄酮类化合物的合成,为这些提供更大的脂溶性,生物活性,和可用性。在这项研究中,克隆了来自烟曲霉的热稳定的异戊烯基转移酶(AfPT),并在大肠杆菌中表达。通过优化诱导条件,AfPT的表达水平达到39.3mU/mL,大约是优化前的200%。此外,我们确定了AfPT的酶学性质。随后,将AfPT以0.6mg/mg的最大负载固定在羧甲基纤维素磁性纳米颗粒(CMN)上。CMN-AfPT的最佳活性在pH8.0和55°C下实现。热稳定性分析表明,在55℃孵育4小时后,CMN-AfPT的残留活性大于50%。CMN-AfPT对柚皮素的Km和Vmax分别为0.082mM和5.57nmol/min/mg,分别。CMN-AfPT的Kcat/Km比值高于AfPT。即使在储存30天后,CMN-AfPT的残留异戊二烯基转移酶活性仍高于70%。Further,CMN-AfPT在重复使用10个循环后保留了其原始活性的68%。与免费AfPT相比,CMN-AfPT显示出更高的催化效率,热稳定性,金属离子耐受性,底物亲和力,储存稳定性,和可重用性。我们的研究提出了一种热稳定的异戊烯基转移酶及其固定化形式,用于体外生产异戊烯化类黄酮。
    Prenyltransferases catalyze the synthesis of prenylated flavonoids, providing these with greater lipid solubility, biological activity, and availability. In this study, a thermostable prenyltransferase (AfPT) from Aspergillus fumigatiaffinis was cloned and expressed in Escherichia coli. By optimizing induction conditions, the expression level of AfPT reached 39.3 mU/mL, which was approximately 200 % of that before optimization. Additionally, we determined the enzymatic properties of AfPT. Subsequently, AfPT was immobilized on carboxymethyl cellulose magnetic nanoparticles (CMN) at a maximum load of 0.6 mg/mg. Optimal activity of CMN-AfPT was achieved at pH 8.0 and 55 °C. Thermostability assays showed that the residual activity of CMN-AfPT was greater than 50 % after incubation at 55 °C for 4 h. Km and Vmax of CMN-AfPT for naringenin were 0.082 mM and 5.57 nmol/min/mg, respectively. The Kcat/Km ratio of CMN-AfPT was higher than that of AfPT. Residual prenyltransferase activity of CMN-AfPT remained higher than 70 % even after 30 days of storage. Further, CMN-AfPT retained 68 % of its original activity after 10 cycles of reuse. Compared with free AfPT, CMN-AfPT showed higher catalytic efficiency, thermostability, metal ion tolerance, substrate affinity, storage stability, and reusability. Our study presents a thermostable prenyltransferase and its immobilized form for the production of prenylated flavonoids in vitro.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    真菌杂合萜类糖类构成了一个新的和不断增长的天然产物家族,具有重要的生物医学和农业活性。最具代表性的家族之一是宇宙孢子虫,其特征是氧化萜类单位和糖部分的杂化程度,然而,迄今为止,这些积木的装配线难以捉摸。在这里,通过基因组挖掘,从镰刀菌中发现了一个cos簇,用于合成cosmosportasideC(1)。UbiA家族膜内异戊二烯基转移酶(UbiA型PT),多功能细胞色素P450,α,β-水解酶,乙酰转移酶,二甲基烯丙基转移酶(DMAT型PT)和糖基转移酶,使用初级中央代谢物在1的支架组装中协同作用。此外,还建立了1的C-4,C-6和C-7的绝对构型。我们的工作重要地阐明了UbiA型和DMAT型PT的意外功能,并为理解真菌中杂合萜类糖的合成逻辑提供了一个例子。
    Fungal hybrid terpenoid saccharides constitute a new and growing family of natural products with significant biomedical and agricultural activities. One representative family is the cosmosporasides, which feature oxidized terpenoid units and saccharide moieties; however, the assembly line of these building blocks has been elusive. Herein, a cos cluster from Fusarium orthoceras was discovered for the synthesis of cosmosporaside C (1) by genome mining. A UbiA family intramembrane prenyltransferase (UbiA-type PT), a multifunctional cytochrome P450, an α,β-hydrolase, an acetyltransferase, a dimethylallyl transferase (DMAT-type PT) and a glycosyltransferase function cooperatively in the assembly of the scaffold of 1 using primary central metabolites. The absolute configuration at C4, C6 and C7 of 1 was also established. Our work clarifies the unexpected functions of UbiA-type and DMAT-type PTs and provides an example for understanding the synthetic logic of hybrid terpenoid saccharides in fungi.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    来自陆生立体声的真菌异戊二烯基转移酶ShPT被认为是4-羟基苯甲醇的异戊二烯化,从而参与振动内酯的生物合成。在这项研究中,我们证明,在二甲基烯丙基和香叶基二磷酸酯存在下,ShPT接受羟基萘代替苯甲醇或醛进行常规C-异戊二烯化。尽管ShPT的天然底物仍然未知,我们的结果提供了一种来自担子菌的额外的异戊烯基转移酶,研究较少,与其他来源相比。此外,这项研究扩展了区域选择性生产异戊二烯化萘衍生物的化学工具箱。关键点:•担子菌异戊烯酰转移酶•生化表征•DMATS异戊烯酰转移酶异戊烯化羟基萘衍生物。
    The fungal prenyltransferase ShPT from Stereum hirsutum was believed to prenylate 4-hydroxybenzyl alcohol and thereby be involved in the vibralactone biosynthesis. In this study, we demonstrate that hydroxynaphthalenes instead of benzyl alcohol or aldehyde were accepted by ShPT for regular C-prenylation in the presence of both dimethylallyl and geranyl diphosphate. Although the natural substrate of ShPT remains unknown, our results provide one additional prenyltransferase from basidiomycetes, which are less studied, in comparison to those from other sources. Furthermore, this study expands the chemical toolbox for regioselective production of prenylated naphthalene derivatives. KEY POINTS: •Basidiomycetous prenyltransferase •Biochemical characterization •A DMATS prenyltransferase prenylating hydroxynaphthalene derivatives.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号