PpIX, protoporphyrin IX

PPIX,原卟啉 IX
  • 文章类型: Case Reports
    暂无摘要。
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    如今,传染病作为全球危机持续存在,对世界各国的公共卫生和经济稳定造成重大破坏。尤其是由于多药耐药性(MDR)的流行和出现以及现有治疗选择的局限性,细菌感染仍然是最严重的问题。抗菌光动力疗法(APDT)是一种潜在的治疗方式,涉及光敏剂(PS)的系统给药,光,和分子氧(O2)用于应对细菌感染。尽管现有的卟啉和非卟啉PS在APDT中有效,溶解性差,对革兰氏阴性细菌的疗效有限,和非特异性分布阻碍了它们的临床应用。因此,为了提高传统PS的效率,各种聚合物驱动的改性和功能化策略已被采用来设计多功能混合光疗。这篇综述评估了为APDT应用开发的聚合物-PSs混合材料的最新进展和最新研究。Further,以下方面的关键研究成果被认为是深入的建设性讨论:i)通过各种分子相互作用的PSs集成/功能化聚合物复合材料;ii)PSs沉积在不同基材和设备上的涂层,以消除与医疗保健相关的感染;iii)PSs嵌入膜,脚手架,和用于再生医学应用的水凝胶。
    Nowadays, infectious diseases persist as a global crisis by causing significant destruction to public health and the economic stability of countries worldwide. Especially bacterial infections remain a most severe concern due to the prevalence and emergence of multi-drug resistance (MDR) and limitations with existing therapeutic options. Antibacterial photodynamic therapy (APDT) is a potential therapeutic modality that involves the systematic administration of photosensitizers (PSs), light, and molecular oxygen (O2) for coping with bacterial infections. Although the existing porphyrin and non-porphyrin PSs were effective in APDT, the poor solubility, limited efficacy against Gram-negative bacteria, and non-specific distribution hinder their clinical applications. Accordingly, to promote the efficiency of conventional PSs, various polymer-driven modification and functionalization strategies have been adopted to engineer multifunctional hybrid phototherapeutics. This review assesses recent advancements and state-of-the-art research in polymer-PSs hybrid materials developed for APDT applications. Further, the key research findings of the following aspects are considered in-depth with constructive discussions: i) PSs-integrated/functionalized polymeric composites through various molecular interactions; ii) PSs-deposited coatings on different substrates and devices to eliminate healthcare-associated infections; and iii) PSs-embedded films, scaffolds, and hydrogels for regenerative medicine applications.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    5-氨基乙酰丙酸(5-ALA)由于其可忽略的光敏毒性而被批准用于临床光动力疗法(PDT)。然而,5-ALA的疗效受到细胞内生物转化失活和肿瘤细胞潜在DNA修复的限制。受铁离子在5-ALA转化和DNA修复中的关键功能的启发,开发了一种具有细胞内铁离子调节特性的脂质体纳米药物(MFLs@5-ALA/DFO),用于增强5-ALA的PDT,通过共包封5-ALA和DFO(去铁胺,一种特殊的铁螯合剂)进入膜融合脂质体(MFLs)。MFLs@5-ALA/DFO表现出改善的药学行为并且与肿瘤细胞膜快速融合以用于5-ALA和DFO共同递送。MFLS@5-ALA/DFO可以有效地还原铁离子,从而阻止光敏原卟啉IX(PpIX)向血红素的生物转化,实现光敏性的显著积累。同时,铁离子的还原也抑制了DNA修复酶的活性,导致肿瘤细胞DNA损伤加重。我们的研究结果表明,MFLs@5-ALA/DFO有可能用于增强5-ALA的PDT。
    5-Aminolevulinic acid (5-ALA) has been approved for clinical photodynamic therapy (PDT) due to its negligible photosensitive toxicity. However, the curative effect of 5-ALA is restricted by intracellular biotransformation inactivation of 5-ALA and potential DNA repair of tumor cells. Inspired by the crucial function of iron ions in 5-ALA transformation and DNA repair, a liposomal nanomedicine (MFLs@5-ALA/DFO) with intracellular iron ion regulation property was developed for boosting the PDT of 5-ALA, which was prepared by co-encapsulating 5-ALA and DFO (deferoxamine, a special iron chelator) into the membrane fusion liposomes (MFLs). MFLs@5-ALA/DFO showed an improved pharmaceutical behavior and rapidly fused with tumor cell membrane for 5-ALA and DFO co-delivery. MFLs@5-ALA/DFO could efficiently reduce iron ion, thus blocking the biotransformation of photosensitive protoporphyrin IX (PpIX) to heme, realizing significant accumulation of photosensitivity. Meanwhile, the activity of DNA repair enzyme was also inhibited with the reduction of iron ion, resulting in the aggravated DNA damage in tumor cells. Our findings showed MFLs@5-ALA/DFO had potential to be applied for enhanced PDT of 5-ALA.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    18kDa转运蛋白(TSPO),以前被称为外周苯二氮卓受体,主要定位于类固醇生成细胞的线粒体外膜。在生理条件下脑TSPO表达相对较低,但响应神经胶质细胞激活而上调。作为神经炎症的主要指标,TSPO与许多神经精神疾病和神经退行性疾病的发病机制和进展有关。包括阿尔茨海默病(AD),肌萎缩侧索硬化(ALS),帕金森病(PD),多发性硬化症(MS),重度抑郁症(MDD)和强迫症(OCD)。在这种情况下,已经开发了许多TSPO靶向的正电子发射断层扫描(PET)示踪剂。其中,几种放射性配体已进入临床研究。在这次审查中,我们将概述TSPOPET示踪剂的最新发展,专注于放射性配体设计,放射性同位素标记,药代动力学,和PET成像评价。此外,我们会考虑目前的限制,以及TSPO放射性药物未来应用的翻译潜力。这篇综述旨在不仅提出当前TSPOPET成像中的挑战,同时也为TSPO靶向PET示踪剂的发现工作提供了新的视角。应对这些挑战将促进TSPO在与中枢神经系统疾病相关的神经炎症的临床研究中的翻译。
    The 18 kDa translocator protein (TSPO), previously known as the peripheral benzodiazepine receptor, is predominately localized to the outer mitochondrial membrane in steroidogenic cells. Brain TSPO expression is relatively low under physiological conditions, but is upregulated in response to glial cell activation. As the primary index of neuroinflammation, TSPO is implicated in the pathogenesis and progression of numerous neuropsychiatric disorders and neurodegenerative diseases, including Alzheimer\'s disease (AD), amyotrophic lateral sclerosis (ALS), Parkinson\'s disease (PD), multiple sclerosis (MS), major depressive disorder (MDD) and obsessive compulsive disorder (OCD). In this context, numerous TSPO-targeted positron emission tomography (PET) tracers have been developed. Among them, several radioligands have advanced to clinical research studies. In this review, we will overview the recent development of TSPO PET tracers, focusing on the radioligand design, radioisotope labeling, pharmacokinetics, and PET imaging evaluation. Additionally, we will consider current limitations, as well as translational potential for future application of TSPO radiopharmaceuticals. This review aims to not only present the challenges in current TSPO PET imaging, but to also provide a new perspective on TSPO targeted PET tracer discovery efforts. Addressing these challenges will facilitate the translation of TSPO in clinical studies of neuroinflammation associated with central nervous system diseases.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    据报道,青蒿素及其衍生物(ARTs)具有血红素依赖性抗肿瘤活性。另一方面,已知组蛋白去乙酰化酶抑制剂(HDACi)能够促进红系细胞中血红素的合成。然而,HDACi对非红细胞血红素稳态的影响尚不清楚.我们设想HDACi和青蒿琥酯(ARS)的组合可能通过调节血红素合成而具有协同抗肿瘤活性。体外研究表明,ARS和HDACi的组合通过诱导细胞死亡发挥协同肿瘤抑制作用。此外,在无明显毒性的异种移植模型中,这种联合疗法比ARS或HDACi单药疗法显示出更有效的抗肿瘤活性.重要的是,机制研究表明,HDACi与ARS协调以增加5-氨基乙酰丙酸合酶(ALAS1)的表达,以及随后的血红素生产,导致ARS的细胞毒性增强。值得注意的是,敲除ALAS1显著减弱ARS和HDACi对肿瘤抑制的协同作用,表明ALAS1上调在介导ARS细胞毒性中的关键作用。总的来说,我们的研究揭示了ARS和HDACi的协同抗肿瘤作用机制。该发现表明,通过基于ART和其他血红素合成调节剂的组合调节血红素合成途径代表了一种有希望的实体瘤治疗方法。
    Artemisinin and its derivatives (ARTs) were reported to display heme-dependent antitumor activity. On the other hand, histone deacetylase inhibitors (HDACi) were known to be able to promote heme synthesis in erythroid cells. Nevertheless, the effect of HDACi on heme homeostasis in non-erythrocytes remains unknown. We envisioned that the combination of HDACi and artesunate (ARS) might have synergistic antitumor activity through modulating heme synthesis. In vitro studies revealed that combination of ARS and HDACi exerted synergistic tumor inhibition by inducing cell death. Moreover, this combination exhibited more effective antitumor activity than either ARS or HDACi monotherapy in xenograft models without apparent toxicity. Importantly, mechanistic studies revealed that HDACi coordinated with ARS to increase 5-aminolevulinate synthase (ALAS1) expression, and subsequent heme production, leading to enhanced cytotoxicity of ARS. Notably, knocking down ALAS1 significantly blunted the synergistic effect of ARS and HDACi on tumor inhibition, indicating a critical role of ALAS1 upregulation in mediating ARS cytotoxicity. Collectively, our study revealed the mechanism of synergistic antitumor action of ARS and HDACi. This finding indicates that modulation of heme synthesis pathway by the combination based on ARTs and other heme synthesis modulators represents a promising therapeutic approach to solid tumors.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    OBJECTIVE: To assess the diagnostic accuracy and safety of photodynamic diagnosis (PDD) in upper urinary tract urothelial carcinoma (UUTUC).
    METHODS: A systematic literature search was conducted. Included studies were assessed for the risks of bias and quality using appropriate tools. Dedicated data extraction forms were used. Diagnostic accuracy in terms of sensitivity and specificity were quoted whenever provided by individual studies. A combined toxicity profile of 5-aminolevulinic acid (5ALA) was given after reviewing individual studies.
    RESULTS: In all, 17 studies were identified. After screening seven studies were included involving a total of 194 patients. None of the studies were randomised. All the available studies were of low-to-moderate quality. The largest available study, with 106 patients, reported a sensitivity of 95.8% and 53.5% for PDD and white-light (WL) ureterorenoscopy (URS) respectively, with a statistically significant difference. The specificity was 96.6% for PDD and 95.2% for WL-URS with no statistical significance. PDD showed better ability in detecting carcinoma in situ and dysplasia. One study compared PDD to computed tomography urogram (CTU) and found PDD to have better sensitivity and statistically significantly better specificity. 5ALA-associated toxicity was minor in nature and hypotension was the most common adverse event.
    CONCLUSIONS: PDD in UUTUC appears to be more accurate than WL-URS and CTU, with no significant toxicity. Larger scale randomised trials are needed.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    核受体,REV-ERBα,在昼夜节律中起着关键作用,需要血红素作为其配体。本研究确定血红素前体,5-氨基乙酰丙酸(ALA),影响REV-ERBα及其靶基因。当暴露于ALA时,人类肺二倍体细胞系,WI-38显示REV-ERBα的激活和REV-ERBα靶基因转录的抑制,包括BMAL1,昼夜节律振荡器的重要组成部分。此外,柠檬酸亚铁钠(SFC)和ALA的共孵育还激活了REV-ERBα,并抑制了REV-ERBα靶基因的转录。这些结果表明ALA通过REV-ERBα调节人类昼夜节律。
    The nuclear receptor, REV-ERBα, has a key role in circadian rhythms and requires heme as its ligand. The present study determined whether the heme precursor, 5-aminolevulinic acid (ALA), affects REV-ERBα and its target genes. When exposed to ALA, the human lung diploid cell line, WI-38, exhibited activation of REV-ERBα and repression of the transcription of REV-ERBα target genes, including BMAL1, an essential component of the circadian oscillator. Moreover, co-incubation of sodium ferrous citrate (SFC) and ALA also activated REV-ERBα and repressed the transcription of REV-ERBα target genes. These results indicate that ALA regulates human circadian rhythms via REV-ERBα.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号