Positional information

位置信息
  • 文章类型: Journal Article
    根据协调局部细胞形态发生的空间和时间线索,在发育过程中形成(并在再生过程中重新形成)。尾鳍是大多数鱼类用于推进的主要附属物,并表现出一系列适应不同游泳策略的不同形态,然而,负责产生这些不同形状的分子机制仍然是未知的。在斑马鱼中,尾鳍呈叉形,外围有较长的支持性骨射线,中心有较短的射线。这里,我们证明了过早的,在晚期胚胎发育过程中,声波刺猬a(shha)过表达的瞬时脉冲会导致中央射线的过度增殖和生长,导致成年尾鳍长成三角形,截断形状。全球和区域异位shha过度表达都足以改变鳍的形状,叉形可以通过随后用规范Shh途径的拮抗剂进行治疗来挽救。诱导的截短鳍显示出减少的鳍射线数,并且无法形成通常将背侧和腹侧鳍叶分开的充膜舒张。当分叉的鳍再生其原始的分叉形态时,截断鳍再生截断,这表明,在胚胎发生过程中,通过短暂的治疗可以永久性地改变鳍状射线的位置记忆。射线鳍鱼已经进化出了广泛的尾鳍形态,从截断到分叉,当前的工作提供了对可能构成这种形状多样性的发展机制的见解。
    Appendage shape is formed during development (and re-formed during regeneration) according to spatial and temporal cues that orchestrate local cellular morphogenesis. The caudal fin is the primary appendage used for propulsion in most fish species, and exhibits a range of distinct morphologies adapted for different swimming strategies, however the molecular mechanisms responsible for generating these diverse shapes remain mostly unknown. In zebrafish, caudal fins display a forked shape, with longer supportive bony rays at the periphery and shortest rays at the center. Here, we show that a premature, transient pulse of sonic hedgehog a (shha) overexpression during late embryonic development results in excess proliferation and growth of the central rays, causing the adult caudal fin to grow into a triangular, truncate shape. Both global and regional ectopic shha overexpression are sufficient to alter fin shape, and forked shape may be rescued by subsequent treatment with an antagonist of the canonical Shh pathway. The induced truncate fins show a decreased fin ray number and fail to form the hypural diastema that normally separates the dorsal and ventral fin lobes. While forked fins regenerate their original forked morphology, truncate fins regenerate truncate, suggesting that positional memory of the fin rays can be permanently altered by a transient treatment during embryogenesis. Ray finned fish have evolved a wide spectrum of caudal fin morphologies, ranging from truncate to forked, and the current work offers insights into the developmental mechanisms that may underlie this shape diversity.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    sal肢体正确地再生缺失的肢体段,因为结缔组织细胞具有特定于片段的身份,称为“位置信息”。位置信息如何在染色质水平上进行分子编码是未知的。这里,我们在成熟和再生的轴突肢体结缔组织细胞中进行了全基因组染色质分析.我们发现组蛋白H3K27me3的片段特异性水平是主要的位置标记,特别是在肢体同源异型蛋白基因位点,但不是它们的上游调节因子,构成固有段信息代码。再生期间,再生特异性调节元件在发育调节元件重新出现之前变得活跃。在手中,同源异型蛋白基因HoxA13的允许染色质状态参与再生程序,绕过上肢程序。再生调节元件与其他再生动物中发现的那些比较确定了一组核心共享的转录因子,支持一个古老的,保守的再生程序。
    The salamander limb correctly regenerates missing limb segments because connective tissue cells have segment-specific identities, termed \"positional information\". How positional information is molecularly encoded at the chromatin level has been unknown. Here, we performed genome-wide chromatin profiling in mature and regenerating axolotl limb connective tissue cells. We find segment-specific levels of histone H3K27me3 as the major positional mark, especially at limb homeoprotein gene loci but not their upstream regulators, constituting an intrinsic segment information code. During regeneration, regeneration-specific regulatory elements became active prior to the re-appearance of developmental regulatory elements. In the hand, the permissive chromatin state of the homeoprotein gene HoxA13 engages with the regeneration program bypassing the upper limb program. Comparison of regeneration regulatory elements with those found in other regenerative animals identified a core shared set of transcription factors, supporting an ancient, conserved regeneration program.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    发育调节因子的Wnt家族以果蝇分段基因无翅和鼠原癌基因int-1命名。这两个基因之间的同源性将肿瘤发生与发育中的细胞-细胞信号联系起来。我回顾了最初是如何描述无翼的,克隆,作为识别发育细胞间信号的一部分,基于位置信息模型的预测,以及同源和分割基因突变体的特性。无翼在图案化多个胚胎和成体结构中的要求和细胞非自主性巩固了其作为候选信号分子的地位。无翼突变和转录单位的物理位置定义了基因及其发育转录模式。当int-1的果蝇同源物被分离时,并预测编码分泌的原癌基因同源物,它与无翼基因的身份证实了发育的细胞-细胞信号已被识别并将癌症与发育联系起来。
    The Wnt family of developmental regulators were named after the Drosophila segmentation gene wingless and the murine proto-oncogene int-1. Homology between these two genes connected oncogenesis to cell-cell signals in development. I review how wingless was initially characterized, and cloned, as part of the quest to identify developmental cell-to-cell signals, based on predictions of the Positional Information Model, and on the properties of homeotic and segmentation gene mutants. The requirements and cell-nonautonomy of wingless in patterning multiple embryonic and adult structures solidified its status as a candidate signaling molecule. The physical location of wingless mutations and transcription unit defined the gene and its developmental transcription pattern. When the Drosophila homolog of int-1 was then isolated, and predicted to encode a secreted proto-oncogene homolog, it\'s identity to the wingless gene confirmed that a developmental cell-cell signal had been identified and connected cancer to development.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    在拟南芥根中,生长是由分生组织维持的。来自组织者细胞的信号,也称为静止中心(QC),对于干细胞的维持和补充至关重要。这里,我们重点介绍了拟南芥干细胞利基概念的创始人和解开管理干细胞规范和维护的监管模块的先驱的三篇出版物,以及根分生组织中的组织模式:BenScheres。他的研究极大地影响了植物领域。我们从Scheres的遗产中选择了三个出版物,可以说是植物发育生物学领域的一个突破。范登伯格等人。(1995)和vandenBerg等人。(1997)发现了位置信息导向图案。Sabatini等人。(1999),发现生长素最大值决定了组织模式和极性。我们描述了简单而优雅的实验设计如何为我们当前对根分生组织功能的理解提供了基础。
    In the Arabidopsis root, growth is sustained by the meristem. Signalling from organiser cells, also termed the quiescent centre (QC), is essential for the maintenance and replenishment of the stem cells. Here, we highlight three publications from the founder of the concept of the stem cell niche in Arabidopsis and a pioneer in unravelling regulatory modules governing stem cell specification and maintenance, as well as tissue patterning in the root meristem: Ben Scheres. His research has tremendously impacted the plant field. We have selected three publications from the Scheres legacy, which can be considered a breakthrough in the field of plant developmental biology. van den Berg et al. (1995) and van den Berg et al. (1997) uncovered that positional information-directed patterning. Sabatini et al. (1999), discovered that auxin maxima determine tissue patterning and polarity. We describe how simple but elegant experimental designs have provided the foundation of our current understanding of the functioning of the root meristem.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    图案形成是均匀上皮片内的细胞根据其彼此的相对空间位置获得独特命运的过程。几个建议,从艾伦·图灵的扩散-反应模型开始,在过去的70年里,已经被提出来描述像脊椎动物节体和皮肤毛发这样的周期性模式,哺乳动物磨牙,鱼鳞,鸟类羽毛芽在发育过程中出现。用于测试所述模型和识别控制模式形成的基因调控网络的最佳实验系统之一是果蝇的复眼,黑腹果蝇.它的细胞形态发生已被广泛研究了一个多世纪,并已分离出数百种影响其发育的突变体。在这篇综述中,我们将集中在形态发生沟,分化波,将最初均匀的细胞片转化为有序的单位眼或眼孔阵列。自从1976年发现沟以来,人们认为正负形态发生素仅负责在静止的细胞场中传播沟的运动。然而,最近的一项研究对该模型提出了挑战,并提出机械驱动的细胞流动也有助于视网膜图案的形成。我们将讨论这两种模型及其对图案的影响。
    Pattern formation is the process by which cells within a homogeneous epithelial sheet acquire distinctive fates depending upon their relative spatial position to each other. Several proposals, starting with Alan Turing\'s diffusion-reaction model, have been put forth over the last 70 years to describe how periodic patterns like those of vertebrate somites and skin hairs, mammalian molars, fish scales, and avian feather buds emerge during development. One of the best experimental systems for testing said models and identifying the gene regulatory networks that control pattern formation is the compound eye of the fruit fly, Drosophila melanogaster. Its cellular morphogenesis has been extensively studied for more than a century and hundreds of mutants that affect its development have been isolated. In this review we will focus on the morphogenetic furrow, a wave of differentiation that takes an initially homogeneous sheet of cells and converts it into an ordered array of unit eyes or ommatidia. Since the discovery of the furrow in 1976, positive and negative acting morphogens have been thought to be solely responsible for propagating the movement of the furrow across a motionless field of cells. However, a recent study has challenged this model and instead proposed that mechanical driven cell flow also contributes to retinal pattern formation. We will discuss both models and their impact on patterning.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    再生能力在动物中很普遍,选定的物种可以恢复因切断主要身体轴的伤口而去除的任何身体部位。这种全身再生的能力,例如扁虫涡虫,Acoels,Cnidarians涉及对伤害的最初反应,伤口部位极化的评估,缺失组织的确定和胚芽命运的编程,和图案化的生长以恢复轴的含量和比例。Wnt信号驱动了涡虫物种Schmidteamediterranea和Dugesiajaponica的全身再生生物学的许多共享和保守的方面,在AcoelHofstenia迈阿密,还有Cnidarians九头蛇和Nematostella.这些重叠的机制表明,全身再生可能是各种动物类群的祖先特性。
    Regeneration abilities are widespread among animals and select species can restore any body parts removed by wounds that sever the major body axes. This capability of whole-body regeneration as exemplified in flatworm planarians, Acoels, and Cnidarians involves initial responses to injury, the assessment of wound site polarization, determination of missing tissue and programming of blastema fate, and patterned outgrowth to restore axis content and proportionality. Wnt signaling drives many shared and conserved aspects of the biology of whole-body regeneration in the planarian species Schmidtea mediterranea and Dugesia japonica, in the Acoel Hofstenia miamia, and in Cnidarians Hydra and Nematostella. These overlapping mechanisms suggest whole-body regeneration might be an ancestral property across diverse animal taxa.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    行星虫具有非凡的全身再生能力。成功的再生结果取决于伤口部位的极性建立等过程,其次是杆(组织器)规范。有趣的是,这些决定子几乎完全由这些动物的肌肉表达。然而,使涡虫肌肉功能多功能性的分子工具包仍然知之甚少。在这里,我们报道了SMED_DDX24,一种D-E-A-D盒RNA解旋酶,是涡虫生存和再生所必需的。我们发现DDX24富含肌肉,其击倒会破坏肌肉纤维组织。这导致极点规格有缺陷,这反过来导致许多位置控制基因在再生过程中的特别的错误调控。ddx24RNAi还上调伤口诱导的Wnt信号传导。抑制这种异位Wnt活性通过实现更好的前极再生来挽救敲低表型。总结一下,我们的工作强调了RNA解旋酶在肌纤维组织中的作用,调节截肢诱导的Wnt水平,这两者似乎都对极点重组至关重要,从而调节全身再生。
    Planarians have a remarkable ability to undergo whole-body regeneration. Successful regeneration outcome is determined by processes like polarity establishment at the wound site, which is followed by pole (organizer) specification. Interestingly, these determinants are almost exclusively expressed by muscles in these animals. However, the molecular toolkit that enables the functional versatility of planarian muscles remains poorly understood. Here we report that SMED_DDX24, a D-E-A-D Box RNA helicase, is necessary for planarian survival and regeneration. We found that DDX24 is enriched in muscles and its knockdown disrupts muscle fiber organization. This leads to defective pole specification, which in turn results in misregulation of many positional control genes specifically during regeneration. ddx24 RNAi also upregulates wound-induced Wnt signalling. Suppressing this ectopic Wnt activity rescues the knockdown phenotype by enabling better anterior pole regeneration. To summarize, our work highlights the role of an RNA helicase in muscle fiber organization, and modulating amputation-induced wnt levels, both of which seem critical for pole re-organization, thereby regulating whole-body regeneration.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    位置信息是发育生物学中的核心概念。在发育中的器官中,位置信息可以理想化为一个局部坐标系,该坐标系由组织者在关键位置控制的形态发生原梯度产生。这提供了一种合理的机制,可以将在单个细胞中运行的分子网络整合到组织新兴形式所必需的空间协调的多细胞反应中。了解位置线索如何指导形态发生需要在其基础坐标系的背景下量化基因表达和生长动力学。这里,我们介绍了MorphoGraphX软件的最新进展(BarbierdeReuille等人。,2015),它实施了一个通用框架,用当地坐标系注释发展中的器官。这些坐标系为显微镜数据引入了以器官为中心的空间环境,允许基因表达和生长被量化,并在被认为控制它们的位置信息的背景下进行比较。
    Positional information is a central concept in developmental biology. In developing organs, positional information can be idealized as a local coordinate system that arises from morphogen gradients controlled by organizers at key locations. This offers a plausible mechanism for the integration of the molecular networks operating in individual cells into the spatially coordinated multicellular responses necessary for the organization of emergent forms. Understanding how positional cues guide morphogenesis requires the quantification of gene expression and growth dynamics in the context of their underlying coordinate systems. Here, we present recent advances in the MorphoGraphX software (Barbier de Reuille et al., 2015⁠) that implement a generalized framework to annotate developing organs with local coordinate systems. These coordinate systems introduce an organ-centric spatial context to microscopy data, allowing gene expression and growth to be quantified and compared in the context of the positional information thought to control them.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    40多年来,果蝇胚胎中的双环驼背(Bcd-hb)系统已被用作模型,以研究形态原浓度梯度中的位置信息如何被强有力地转化为阶梯状响应。此后,理论与实验之间的大量定量比较对最初的范式提出了质疑,即尖锐的hb转录模式仅来自Bicoid转录因子与基因启动子区域之间的扩散生化相互作用。已经提出了几种替代机制,例如位置信息的其他来源,来自Hb蛋白或失衡转录激活的正反馈。通过使用MS2-MCPRNA标记系统并实时分析,Bicoid和/或其两个伙伴塞尔达和驼背的合成报告基因的转录动力学,我们表明,所有早期的hb表达模式特征和时间动力学都与具有短衰减长度的Bicoid活动梯度作为位置信息的唯一来源的平衡模型兼容。同时,Bicoid的合作伙伴通过不同的方式加快了这一过程:塞尔达降低了转录激活所需的Bicoid浓度阈值,而驼背减少了突发性并增加了聚合酶的激发率。
    For over 40 years, the Bicoid-hunchback (Bcd-hb) system in the fruit fly embryo has been used as a model to study how positional information in morphogen concentration gradients is robustly translated into step-like responses. A body of quantitative comparisons between theory and experiment have since questioned the initial paradigm that the sharp hb transcription pattern emerges solely from diffusive biochemical interactions between the Bicoid transcription factor and the gene promoter region. Several alternative mechanisms have been proposed, such as additional sources of positional information, positive feedback from Hb proteins or out-of-equilibrium transcription activation. By using the MS2-MCP RNA-tagging system and analysing in real time, the transcription dynamics of synthetic reporters for Bicoid and/or its two partners Zelda and Hunchback, we show that all the early hb expression pattern features and temporal dynamics are compatible with an equilibrium model with a short decay length Bicoid activity gradient as a sole source of positional information. Meanwhile, Bicoid\'s partners speed-up the process by different means: Zelda lowers the Bicoid concentration threshold required for transcriptional activation while Hunchback reduces burstiness and increases the polymerase firing rate.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    组织身份测定对再生至关重要,并且涡虫前后(AP)轴使用从体壁肌肉表达的位置控制基因来确定身体区域化。规范的Wnt信号通过notum和wnt1信号建立前后极身份,和两个Wnt/FGFRL信号通路控制头部和躯干结构域,但是他们的下游信号机制还没有被完全理解。这里,我们确定了一个涡虫Src同源物,该同源物将头部和躯干的身份限制在前部位置。src-1(RNAi)动物形成扩大的大脑和异位的眼睛,也复制躯干组织,类似于Wnt/FGFRLRNAi表型的组合。在Schmidteamediterranea中建立位置控制基因表达区域需要src-1,指示其在图案化AP轴中的上游步骤起作用。双重RNAi实验和眼睛再生测定表明src-1可以与至少一些Wnt和FGFRL因子平行作用。src-1与其他后路促进因子的共同抑制导致了显着的模式变化,并重新编程了Wnt/FGFRL以控制新的位置输出。这些结果将src-1确定为促进指示适当再生的AP定位系统的鲁棒性的因素。
    Tissue identity determination is crucial for regeneration, and the planarian anteroposterior (AP) axis uses positional control genes expressed from body wall muscle to determine body regionalization. Canonical Wnt signaling establishes anterior versus posterior pole identities through notum and wnt1 signaling, and two Wnt/FGFRL signaling pathways control head and trunk domains, but their downstream signaling mechanisms are not fully understood. Here, we identify a planarian Src homolog that restricts head and trunk identities to anterior positions. src-1(RNAi) animals formed enlarged brains and ectopic eyes and also duplicated trunk tissue, similar to a combination of Wnt/FGFRL RNAi phenotypes. src-1 was required for establishing territories of positional control gene expression in Schmidtea mediterranea, indicating that it acts at an upstream step in patterning the AP axis. Double RNAi experiments and eye regeneration assays suggest src-1 can act in parallel to at least some Wnt and FGFRL factors. Co-inhibition of src-1 with other posterior-promoting factors led to dramatic patterning changes and a reprogramming of Wnt/FGFRLs into controlling new positional outputs. These results identify src-1 as a factor that promotes robustness of the AP positional system that instructs appropriate regeneration.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号