Plastids

质体
  • 文章类型: Journal Article
    VQ1和VQ10主要是非结构化的同源蛋白,具有蛋白质-蛋白质相互作用的重要潜力。酵母双杂交(Y2H)分析证实,两种蛋白质不仅与自身相互作用,而且与其他VQ和WRKY蛋白质相互作用。以VQ1为诱饵筛选拟南芥Y2H文库,鉴定出287种相互作用蛋白。筛选的验证证实与VQl的相互作用也与VQ10发生,支持它们的功能同源性。虽然VQ1或VQ10蛋白不定位在质体中,发现47个VQ1靶标是质体蛋白。在植物中,通过共免疫沉淀证实了与类异戊二烯生物合成酶1-脱氧-D-木酮糖-5-磷酸合酶(DXS)的相互作用。DXS通过氧化还原调节的分子间二硫键形成寡聚化,与VQ1或VQ10的相互作用不涉及它们独特的C残基。VQ-DXS蛋白相互作用不改变质体DXS定位或其寡聚化状态。尽管与野生型植物相比,VQ1和VQ10表达增强或降低的植物没有表现出类异戊二烯水平的显著改变,它们确实显示出显著提高或降低的光合作用效率,分别。
    VQ1 and VQ10 are largely unstructured homologous proteins with a significant potential for protein-protein interactions. Yeast two-hybrid (Y2H) analysis confirmed that both proteins interact not only with themselves and each other but also with other VQ and WRKY proteins. Screening an Arabidopsis Y2H library with VQ1 as bait identified 287 interacting proteins. Validation of the screening confirmed that interactions with VQ1 also occurred with VQ10, supporting their functional homology. Although VQ1 or VQ10 proteins do not localize in plastids, 47 VQ1-targets were found to be plastidial proteins. In planta interaction with the isoprenoid biosynthetic enzyme 1-deoxy-D-xylulose-5-phosphate synthase (DXS) was confirmed by co-immunoprecipitation. DXS oligomerizes through redox-regulated intermolecular disulfide bond formation, and the interaction with VQ1 or VQ10 do not involve their unique C residues. The VQ-DXS protein interaction did not alter plastid DXS localization or its oligomerization state. Although plants with enhanced or reduced VQ1 and VQ10 expression did not exhibit significantly altered levels of isoprenoids compared to wild-type plants, they did display significantly improved or diminished photosynthesis efficiency, respectively.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    质体逆行信号在协调质体基因和光合作用相关核基因(PhANGs)的表达中起着关键作用。虽然质体逆行信号传导可能会受到线粒体功能障碍的实质性损害,目前尚不清楚是否需要特定的线粒体因子来调节质体逆行信号传导。这里,我们表明,线粒体ATP合酶β亚基突变体与降低ATP合酶活性的质体逆行信号在拟南芥受损。转录组分析显示,在编码线粒体ATP合酶β亚基的AT5G08670基因受影响的突变体中,PhANGs的表达水平明显更高,与用林可霉素(LIN)或去甲氟拉松(NF)处理的野生型(WT)幼苗相比。进一步的研究表明,在用LIN处理的AT5G08670突变体幼苗中,参与叶绿体和线粒体逆行信号传导的核基因的表达受到影响。这些变化可能与某些转录因子(TF)的调节有关,如LHY(晚延长下胚轴),PIF(植物色素相互作用因子),MYB,WRKY,和AP2/ERF(乙烯响应因子)。这些发现表明线粒体ATP合酶的活性显着影响质体逆行信号传导。
    Plastid retrograde signaling plays a key role in coordinating the expression of plastid genes and photosynthesis-associated nuclear genes (PhANGs). Although plastid retrograde signaling can be substantially compromised by mitochondrial dysfunction, it is not yet clear whether specific mitochondrial factors are required to regulate plastid retrograde signaling. Here, we show that mitochondrial ATP synthase beta-subunit mutants with decreased ATP synthase activity are impaired in plastid retrograde signaling in Arabidopsis thaliana. Transcriptome analysis revealed that the expression levels of PhANGs were significantly higher in the mutants affected in the AT5G08670 gene encoding the mitochondrial ATP synthase beta-subunit, compared to wild-type (WT) seedlings when treated with lincomycin (LIN) or norflurazon (NF). Further studies indicated that the expression of nuclear genes involved in chloroplast and mitochondrial retrograde signaling was affected in the AT5G08670 mutant seedlings treated with LIN. These changes might be linked to the modulation of some transcription factors (TFs), such as LHY (Late Elongated Hypocotyl), PIF (Phytochrome-Interacting Factors), MYB, WRKY, and AP2/ERF (Ethylene Responsive Factors). These findings suggest that the activity of mitochondrial ATP synthase significantly influences plastid retrograde signaling.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    未戊烯化的苯醌2,3,5,6-四甲基-1,4-苯醌(杜醌),2-氯-1,4-苯醌(CBQ),2,6-二甲基-1,4-苯醌(DMBQ),2,6-二氯-1,4-苯醌(DCBQ),和2,6-二甲氧基-1,4-苯醌(DMOBQ)被测试为塑性醌9的推定抗代谢物,后者是生氧光养物的重要电子和质子载体。Duroquinone和CBQ在抑制蓝细菌集胞藻的生长方面最有效。PCC6803在光营养或光合自养条件下。杜松醌,发现光合抑制剂甲基-质体醌-9的紧密结构类似物在低至10μM的浓度下对集胞藻具有真正的杀菌活性,而在相同浓度下,CBQ仅充当温和的抑菌剂。相比之下,只有杜鲁醌在轴系生长的拟南芥中表现出明显的细胞毒性,导致对光系统II的损害并阻碍了CO2的净同化。针对光合辅因子和色素的代谢物谱分析表明,在拟南芥中,杜醌不直接抑制塑性醌9的生物合成。一起来看,这些数据表明,杜仲醌提供了作为杀藻剂和除草剂的前景。
    The unprenylated benzoquinones 2,3,5,6-tetramethyl-1,4-benzoquinone (duroquinone), 2-chloro-1,4-benzoquinone (CBQ), 2,6-dimethyl-1,4-benzoquinone (DMBQ), 2,6-dichloro-1,4-benzoquinone (DCBQ), and 2,6-dimethoxy-1,4-benzoquinone (DMOBQ) were tested as putative antimetabolites of plastoquinone-9, a vital electron and proton carrier of oxygenic phototrophs. Duroquinone and CBQ were the most effective at inhibiting the growth of the cyanobacterium Synechocystis sp. PCC 6803 either in photomixotrophic or photoautotrophic conditions. Duroquinone, a close structural analog of the photosynthetic inhibitor methyl-plastoquinone-9, was found to possess genuine bactericidal activity towards Synechocystis at a concentration as low as 10 μM, while at the same concentration CBQ acted only as a mild bacteriostat. In contrast, only duroquinone displayed marked cytotoxicity in axenically-grown Arabidopsis, resulting in damages to photosystem II and hindered net CO2 assimilation. Metabolite profiling targeted to photosynthetic cofactors and pigments indicated that in Arabidopsis duroquinone does not directly inhibit plastoquinone-9 biosynthesis. Taken together, these data indicate that duroquinone offers prospects as an algicide and herbicide.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    类胡萝卜素,在植物中大量发现的天然四萜类化合物,有助于植物非光合组织的多种颜色,并通过其裂解产品提供香味,在植物生长发育中也起着至关重要的作用。理解合成,降解,和类胡萝卜素的储存途径以及识别调节因子代表了提高植物质量的重要策略。染色体作为主要的质体负责类胡萝卜素的积累,它们的分化与类胡萝卜素的水平有关,使他们成为具有实质性研究兴趣的主题。染色体的分化涉及质体结构和蛋白质导入机制的改变。此外,这个过程受到诸如ORANGE(OR)基因,Clp蛋白酶,叶黄素酯化,和环境因素。本文通过介绍染色体结构的最新进展,阐述了染色体与类胡萝卜素积累之间的关系。分化过程,和关键的监管因素,为合理开发利用色体提高植物品质提供参考。
    Carotenoids, natural tetraterpenoids found abundantly in plants, contribute to the diverse colors of plant non-photosynthetic tissues and provide fragrance through their cleavage products, which also play crucial roles in plant growth and development. Understanding the synthesis, degradation, and storage pathways of carotenoids and identifying regulatory factors represents a significant strategy for enhancing plant quality. Chromoplasts serve as the primary plastids responsible for carotenoid accumulation, and their differentiation is linked to the levels of carotenoids, rendering them a subject of substantial research interest. The differentiation of chromoplasts involves alterations in plastid structure and protein import machinery. Additionally, this process is influenced by factors such as the ORANGE (OR) gene, Clp proteases, xanthophyll esterification, and environmental factors. This review shows the relationship between chromoplast and carotenoid accumulation by presenting recent advances in chromoplast structure, the differentiation process, and key regulatory factors, which can also provide a reference for rational exploitation of chromoplasts to enhance plant quality.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    Stramenopile藻类对全球初级生产力做出了重大贡献,一个班级,estigmatphyceae,越来越多地研究在高值脂质生产中的应用。然而,关于他们的基本生物学的许多信息仍然未知,包括神秘的本质,在营养细胞中发现的色素球。这里,我们对这个“红色身体”进行了深入的检查,“专注于南绿藻。在细胞周期中,红色体形成在质体附近,但出乎意料的是,它在细胞分裂后与自孢子囊壁一起分泌和释放。干红的身体含有抗氧化剂酮类胡萝卜素,β-胡萝卜素酮酶的过表达会导致红体增大。红外光谱显示长链,脱落的红体和细胞壁中的脂肪族脂质,和UHPLC-HRMS检测C32烷基二醇,一种潜在的Algaenan前体,顽固的细胞壁聚合物。我们建议红体将藻类前体从质体运输到质外体,以掺入子细胞壁。
    Stramenopile algae contribute significantly to global primary productivity, and one class, Eustigmatophyceae, is increasingly studied for applications in high-value lipid production. Yet much about their basic biology remains unknown, including the nature of an enigmatic, pigmented globule found in vegetative cells. Here, we present an in-depth examination of this \"red body,\" focusing on Nannochloropsis oceanica. During the cell cycle, the red body forms adjacent to the plastid, but unexpectedly it is secreted and released with the autosporangial wall following cell division. Shed red bodies contain antioxidant ketocarotenoids, and overexpression of a beta-carotene ketolase results in enlarged red bodies. Infrared spectroscopy indicates long-chain, aliphatic lipids in shed red bodies and cell walls, and UHPLC-HRMS detects a C32 alkyl diol, a potential precursor of algaenan, a recalcitrant cell wall polymer. We propose that the red body transports algaenan precursors from plastid to apoplast to be incorporated into daughter cell walls.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    鞭毛藻是Mesodinium纤毛虫的捕食者,它们只保留隐藻起源的质体。Dinphysis中不存在核光合隐藻基因,这引起了有关这些临时kleptoplastids在外源细胞环境中的功能动力学的有趣的生理和进化问题。在包括两种光照条件的实验装置中,与Mesodiniumrubrum和cryptophyteTeleaulax两栖植物的比较分析表明,Dinphysisacuminata具有较小和较少动态的功能光合天线,由藻红蛋白执行的功能。我们表明,隐藻核的缺乏阻止了藻红蛋白α亚基的合成,从而阻碍了Dinphysis中完整的藻红蛋白的形成。特别是,生化分析表明,Dinphysisacuminata合成的稳定性差,由发色化β亚基组成的不完全藻红蛋白,表现受损。我们证明,因此,新质体的持续供应对于该生物体的生长和有效的光适应至关重要。转录组分析显示,所有检查过的Dinphysisspp菌株。通过水平基因转移获得了隐藻pebA和pebB基因,表明具有合成与隐藻藻红蛋白结合的藻胆素色素的潜在能力。通过强调潜在的长期获得隐藻质体依赖于建立基本功能的遗传独立性,例如光捕获,这项研究强调了细胞器被奴役所固有的复杂的分子挑战,以及光合生物通过内共生多样化的过程。
    Dinophysis dinoflagellates are predators of Mesodinium ciliates, from which they retain only the plastids of cryptophyte origin. The absence of nuclear photosynthetic cryptophyte genes in Dinophysis raises intriguing physiological and evolutionary questions regarding the functional dynamics of these temporary kleptoplastids within a foreign cellular environment. In an experimental setup including two light conditions, the comparative analysis with Mesodinium rubrum and the cryptophyte Teleaulax amphioxeia revealed that Dinophysis acuminata possessed a smaller and less dynamic functional photosynthetic antenna for green light, a function performed by phycoerythrin. We showed that the lack of the cryptophyte nucleus prevented the synthesis of the phycoerythrin α subunit, thereby hindering the formation of a complete phycoerythrin in Dinophysis. In particular, biochemical analyses showed that Dinophysis acuminata synthesized a poorly stable, incomplete phycoerythrin composed of chromophorylated β subunits, with impaired performance. We show that, consequently, a continuous supply of new plastids is crucial for growth and effective photoacclimation in this organism. Transcriptome analyses revealed that all examined strains of Dinophysis spp. have acquired the cryptophyte pebA and pebB genes through horizontal gene transfer, suggesting a potential ability to synthesize the phycobilin pigments bound to the cryptophyte phycoerythrin. By emphasizing that a potential long-term acquisition of the cryptophyte plastid relies on establishing genetic independence for essential functions such as light harvesting, this study highlights the intricate molecular challenges inherent in the enslavement of organelles and the processes involved in the diversification of photosynthetic organisms through endosymbiosis.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    植物细胞拥有两个膜结合的细胞器,它们含有自己的遗传物质-质体和线粒体。尽管这两个细胞器在同一植物细胞内共存并共同进化,它们的基因组拷贝数不同,细胞内组织,和隔离模式。这些属性如何影响固定时间,或者相反,中性等位基因的丢失目前尚未解决。在这里,我们表明线粒体和质体共享相同的突变率,但与线粒体等位基因相比,质体等位基因保持在异质状态的时间明显更长。通过分析海洋开花植物Zosteramarina种群的遗传变异并模拟细胞器等位基因动态,我们研究了等位基因分离和等位基因固定的决定因素。我们的结果表明,细胞群体的瓶颈,例如,在分枝或播种期间,和分生组织的分层,是线粒体等位基因动力学的重要决定因素。此外,我们认为,延长质体等位基因动力学是由于一个未知的活性质体分配机制。质体和线粒体新等位基因固定在不同组织水平上的差异可能表现为适应过程的差异。我们的研究揭示了细胞器种群遗传学的基本原理,这些原理对于进一步研究分歧事件的长期进化和分子年代至关重要。
    Plant cells harbor two membrane-bound organelles containing their own genetic material-plastids and mitochondria. Although the two organelles coexist and coevolve within the same plant cells, they differ in genome copy number, intracellular organization, and mode of segregation. How these attributes affect the time to fixation or, conversely, loss of neutral alleles is currently unresolved. Here, we show that mitochondria and plastids share the same mutation rate, yet plastid alleles remain in a heteroplasmic state significantly longer compared with mitochondrial alleles. By analyzing genetic variants across populations of the marine flowering plant Zostera marina and simulating organelle allele dynamics, we examine the determinants of allele segregation and allele fixation. Our results suggest that the bottlenecks on the cell population, e.g. during branching or seeding, and stratification of the meristematic tissue are important determinants of mitochondrial allele dynamics. Furthermore, we suggest that the prolonged plastid allele dynamics are due to a yet unknown active plastid partition mechanism. The dissimilarity between plastid and mitochondrial novel allele fixation at different levels of organization may manifest in differences in adaptation processes. Our study uncovers fundamental principles of organelle population genetics that are essential for further investigations of long-term evolution and molecular dating of divergence events.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    根内生真菌Serendipitaindica与广谱植物建立了有益的共生关系,并增强了宿主对生物和非生物胁迫的抵抗力。然而,对S.in介导的植物保护的潜在机制知之甚少。这里,我们报道了S.indea效应子(SIE)141及其宿主靶标CDSP32,一种保守的硫氧还蛋白样蛋白,以及增强拟南芥病原体抗性和非生物耐盐性的潜在机制。SIE141结合干扰了CDSP32对叶绿体的规范靶向,导致其重新定位到植物核中。这种核易位对于它们的相互作用和抗性功能都是必不可少的。此外,SIE141增强了CDSP32的氧化还原酶活性,导致CDSP32介导的单体化和激活与发生相关的非表达因子1(NPR1),系统阻力的关键调节器。我们的研究结果提供了有关S.in如何将众所周知的有益作用转移到寄主植物的功能见解,并表明CDSP32是一种遗传资源,可以提高植物对非生物和生物胁迫的抵抗力。
    The root endophytic fungus Serendipita indica establishes beneficial symbioses with a broad spectrum of plants and enhances host resilience against biotic and abiotic stresses. However, little is known about the mechanisms underlying S. indica-mediated plant protection. Here, we report S. indica effector (SIE) 141 and its host target CDSP32, a conserved thioredoxin-like protein, and underlying mechanisms for enhancing pathogen resistance and abiotic salt tolerance in Arabidopsis thaliana. SIE141 binding interfered with canonical targeting of CDSP32 to chloroplasts, leading to its re-location into the plant nucleus. This nuclear translocation is essential for both their interaction and resistance function. Furthermore, SIE141 enhanced oxidoreductase activity of CDSP32, leading to CDSP32-mediated monomerization and activation of NON-EXPRESSOR OF PATHOGENESIS-RELATED 1 (NPR1), a key regulator of systemic resistance. Our findings provide functional insights on how S. indica transfers well-known beneficial effects to host plants and indicate CDSP32 as a genetic resource to improve plant resilience to abiotic and biotic stresses.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    通过shikimate途径,巨大的代谢通量将中心碳代谢与分支酸盐的合成联系起来,芳香族氨基酸苯丙氨酸的常见前体,酪氨酸,和色氨酸,以及其他化合物,包括水杨酸盐或叶酸盐。分支酸盐的替代代谢通道涉及一个关键分支点,由芳香氨基酸水平精细调节。菊苣变位酶催化菊酯转化为预苯酸,苯丙氨酸和酪氨酸的前体,因此是大量的基本衍生化合物,如类黄酮或木质素。这种酶的调节已经在几种植物中得到解决,但是没有研究包括针叶树或其他裸子植物,尽管酚类代谢对这些植物在木质化和木材形成等过程中的重要性。这里,我们发现海洋松树(PinuspinasterAiton)有两个编码分支酸变位酶的基因,PpCM1和PpCM2。我们的研究表明,这些基因编码的质体同工酶显示出被色氨酸增强并被苯丙氨酸和酪氨酸抑制的活性。利用系统发育研究,我们为被子植物中参与质体外苯丙氨酸合成的胞质分支酸突变体的可能进化起源提供了新的见解。基于不同基因表达和共表达分析平台的研究使我们能够提出PpCM2在与木质化相关的苯丙氨酸合成途径中起着核心作用。
    Through the shikimate pathway, a massive metabolic flux connects the central carbon metabolism with the synthesis of chorismate, the common precursor of the aromatic amino acids phenylalanine, tyrosine, and tryptophan, as well as other compounds, including salicylate or folate. The alternative metabolic channeling of chorismate involves a key branch-point, finely regulated by aromatic amino acid levels. Chorismate mutase catalyzes the conversion of chorismate to prephenate, a precursor of phenylalanine and tyrosine and thus a vast repertoire of fundamental derived compounds, such as flavonoids or lignin. The regulation of this enzyme has been addressed in several plant species, but no study has included conifers or other gymnosperms, despite the importance of the phenolic metabolism for these plants in processes such as lignification and wood formation. Here, we show that maritime pine (Pinus pinaster Aiton) has two genes that encode for chorismate mutase, PpCM1 and PpCM2. Our investigations reveal that these genes encode plastidial isoenzymes displaying activities enhanced by tryptophan and repressed by phenylalanine and tyrosine. Using phylogenetic studies, we have provided new insights into the possible evolutionary origin of the cytosolic chorismate mutases in angiosperms involved in the synthesis of phenylalanine outside the plastid. Studies based on different platforms of gene expression and co-expression analysis have allowed us to propose that PpCM2 plays a central role in the phenylalanine synthesis pathway associated with lignification.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    在陆地植物中,质体类型的分化与细胞分化同时发生,并且从一种类型到另一种类型的转变受到发育和环境的控制。质体动力学基于质体和细胞核之间通过顺行和逆行信号传导的双边通信。信号通过与特定的植物激素(脱落酸,stragolactones,Jasmonates,赤霉素,油菜素类固醇,乙烯,水杨酸,细胞分裂素和生长素)。该综述的重点是在发育和压力之间的十字路口,在转录和翻译后水平上对质体能力的调节。特别注意叶绿体,因为研究最多的质体类型。质体编码和核编码蛋白在质体发育和应激反应中的作用,以及通过基质和质体的活性改变质体的命运,正在讨论。响应土壤胁迫剂的质体动力学示例(盐度,铅,镉,砷,和铬)进行了描述。根据生长素和细胞分裂素的调节活性描述了白化病和根系绿化。描述了感觉表皮和血管质体对非生物和生物胁迫的生理和功能反应,以及它们在胁迫感知中的特定作用,以及它们对逆行信号通路的潜在调节。未来的研究观点包括对感觉质体的深入研究,以探索它们建立跨代记忆以应对压力的潜力。提供了有关在种间水平上作用的顺行和逆行途径以及作为新型质体形态发生剂的质体的脂质的建议。
    In land plants plastid type differentiation occurs concomitantly with cellular differentiation and the transition from one type to another is under developmental and environmental control. Plastid dynamism is based on a bilateral communication between plastids and nucleus through anterograde and retrograde signaling. Signaling occurs through the interaction with specific phytohormones (abscisic acid, strigolactones, jasmonates, gibberellins, brassinosteroids, ethylene, salicylic acid, cytokinin and auxin). The review is focused on the modulation of plastid capabilities at both transcriptional and post-translational levels at the crossroad between development and stress, with a particular attention to the chloroplast, because the most studied plastid type. The role of plastid-encoded and nuclear-encoded proteins for plastid development and stress responses, and the changes of plastid fate through the activity of stromules and plastoglobules, are discussed. Examples of plastid dynamism in response to soil stress agents (salinity, lead, cadmium, arsenic, and chromium) are described. Albinism and root greening are described based on the modulation activities of auxin and cytokinin. The physiological and functional responses of the sensory epidermal and vascular plastids to abiotic and biotic stresses along with their specific roles in stress sensing are described together with their potential modulation of retrograde signaling pathways. Future research perspectives include an in-depth study of sensory plastids to explore their potential for establishing a transgenerational memory to stress. Suggestions about anterograde and retrograde pathways acting at interspecific level and on the lipids of plastoglobules as a novel class of plastid morphogenic agents are provided.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号