Peptide Synthases

肽合成酶
  • 文章类型: Journal Article
    背景:细菌抗菌素耐药性对人类构成严重威胁,迫切需要开发新的抗生素。基因组测序的最新进展为发现抗生素提供了新的途径。类芽孢杆菌基因组包含相当多的抗生素生物合成基因簇(BGC),使这些物种成为基因组驱动的新型抗生素探索的良好候选者。然而,尚未广泛研究类芽孢杆菌基因组中的BGC。
    结果:我们对554个类芽孢杆菌基因组序列进行了分析,来自国家生物技术信息中心数据库,通过反SMASH对89个基因组进行了重点调查。我们的分析发现了总共848个BGC,其中716人(84.4%)被列为未知。从最初的554株类芽孢杆菌中,我们选择了26个文化收藏进行深入评估.对这些选定菌株的基因组审查揭示了255个BGC,编码非核糖体肽合成酶,聚酮化合物合酶,和细菌素,221(86.7%)被列为未知。在这些菌株中,20对革兰氏阳性菌黄体微球菌具有抗菌活性,然而,只有六株菌株显示出抗革兰氏阴性细菌大肠杆菌的活性。我们开始关注巴西芽孢杆菌,其中包括五个新的BGC进行进一步调查。为了便于详细表征,我们构建了一个突变体,其中编码一种新型抗生素的单一BGC被激活,同时使用胞嘧啶碱基编辑器(CBE)灭活多个BGC.发现新型抗生素位于细胞壁上,并具有针对革兰氏阳性细菌和真菌的活性。在ESIMS的基础上阐明了新抗生素的化学结构,1D和2DNMR光谱数据。新颖的化合物,分子量为926,被命名为bracidin。
    结论:本研究结果突出了类芽孢杆菌作为新型抗生素有价值来源的潜力。此外,CBE介导的抗生素去复制被证明是一种快速有效的方法,用于表征类芽孢杆菌属的新型抗生素,这表明它将大大加速基于基因组的新抗生素的开发。
    BACKGROUND: Bacterial antimicrobial resistance poses a severe threat to humanity, necessitating the urgent development of new antibiotics. Recent advances in genome sequencing offer new avenues for antibiotic discovery. Paenibacillus genomes encompass a considerable array of antibiotic biosynthetic gene clusters (BGCs), rendering these species as good candidates for genome-driven novel antibiotic exploration. Nevertheless, BGCs within Paenibacillus genomes have not been extensively studied.
    RESULTS: We conducted an analysis of 554 Paenibacillus genome sequences, sourced from the National Center for Biotechnology Information database, with a focused investigation involving 89 of these genomes via antiSMASH. Our analysis unearthed a total of 848 BGCs, of which 716 (84.4%) were classified as unknown. From the initial pool of 554 Paenibacillus strains, we selected 26 available in culture collections for an in-depth evaluation. Genomic scrutiny of these selected strains unveiled 255 BGCs, encoding non-ribosomal peptide synthetases, polyketide synthases, and bacteriocins, with 221 (86.7%) classified as unknown. Among these strains, 20 exhibited antimicrobial activity against the gram-positive bacterium Micrococcus luteus, yet only six strains displayed activity against the gram-negative bacterium Escherichia coli. We proceeded to focus on Paenibacillus brasilensis, which featured five new BGCs for further investigation. To facilitate detailed characterization, we constructed a mutant in which a single BGC encoding a novel antibiotic was activated while simultaneously inactivating multiple BGCs using a cytosine base editor (CBE). The novel antibiotic was found to be localized to the cell wall and demonstrated activity against both gram-positive bacteria and fungi. The chemical structure of the new antibiotic was elucidated on the basis of ESIMS, 1D and 2D NMR spectroscopic data. The novel compound, with a molecular weight of 926, was named bracidin.
    CONCLUSIONS: This study outcome highlights the potential of Paenibacillus species as valuable sources for novel antibiotics. In addition, CBE-mediated dereplication of antibiotics proved to be a rapid and efficient method for characterizing novel antibiotics from Paenibacillus species, suggesting that it will greatly accelerate the genome-based development of new antibiotics.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    为了寻找新的生物活性物质,非核糖体肽合成酶(NRPS)通过合成具有高细胞活性的非蛋白质肽来提供生物多样性。NRPS机械由多个模块组成,每个催化一系列独特的化学反应。对编排这些反应阵列的生物物理原理的不完全理解限制了NRPS在合成生物学中的利用。这里,我们使用核磁共振(NMR)光谱和质谱来解决模间识别如何与托马霉素NRPS中的负载载体蛋白特异性耦合的难题。我们发现了一个衔接子结构域,它直接将负载的载体蛋白从起始模块招募到延伸模块,并揭示了其作用机制。此处发现的类型的衔接子结构域具有特异性规则,可以在工程NRPS机器的设计中潜在地利用。
    In the quest for new bioactive substances, nonribosomal peptide synthetases (NRPS) provide biodiversity by synthesizing nonproteinaceous peptides with high cellular activity. NRPS machinery consists of multiple modules, each catalyzing a unique series of chemical reactions. Incomplete understanding of the biophysical principles orchestrating these reaction arrays limits the exploitation of NRPSs in synthetic biology. Here, we use nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry to solve the conundrum of how intermodular recognition is coupled with loaded carrier protein specificity in the tomaymycin NRPS. We discover an adaptor domain that directly recruits the loaded carrier protein from the initiation module to the elongation module and reveal its mechanism of action. The adaptor domain of the type found here has specificity rules that could potentially be exploited in the design of engineered NRPS machinery.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    铜绿假单胞菌产生铜绿铁载体以获取铁。它的合成涉及四种非核糖体肽合成酶(NRPS)的复杂协调,负责组装pyoverdine肽骨架。这些NRPS的精确细胞组织及其相互作用机制仍不清楚。这里,我们使用了几种单分子显微镜技术的组合来阐明NRPSs在产生pyoverdine的细胞内的空间排列.我们的发现表明,PvdL在定位和迁移模式方面与其他三个NRPS不同。PvdL主要位于内膜,而其他人也探索细胞质区室。利用多色单分子定位的力量,我们进一步揭示了PvdL和其他NRPS之间的共定位,提示PvdL在协调复杂的生物合成途径中的关键作用。我们的观察强烈表明,PvdL在参与pyoverdine生物合成的NRPS组装中充当中心协调器,假设关键的调节功能。
    The pyoverdine siderophore is produced by Pseudomonas aeruginosa to access iron. Its synthesis involves the complex coordination of four nonribosomal peptide synthetases (NRPSs), which are responsible for assembling the pyoverdine peptide backbone. The precise cellular organization of these NRPSs and their mechanisms of interaction remain unclear. Here, we used a combination of several single-molecule microscopy techniques to elucidate the spatial arrangement of NRPSs within pyoverdine-producing cells. Our findings reveal that PvdL differs from the three other NRPSs in terms of localization and mobility patterns. PvdL is predominantly located in the inner membrane, while the others also explore the cytoplasmic compartment. Leveraging the power of multicolor single-molecule localization, we further reveal co-localization between PvdL and the other NRPSs, suggesting a pivotal role for PvdL in orchestrating the intricate biosynthetic pathway. Our observations strongly indicates that PvdL serves as a central orchestrator in the assembly of NRPSs involved in pyoverdine biosynthesis, assuming a critical regulatory function.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    利用生物信息学工具,这项研究扩大了我们对灰葡萄孢中次生代谢的理解,鉴定聚酮合成酶(PKS)中的新基因,非核糖体肽合成酶(NRPS),倍半萜环化酶(STC),二萜环化酶(DTC),和二甲基烯丙基色氨酸合成酶(DMATS)家族。这些发现丰富了与灰霉病菌致病性和生态适应性相关的遗传框架,提供对未知代谢途径的见解。重要的是,先前未注释基因的发现为开发靶向抗真菌策略提供了新的分子靶标,承诺加强作物保护和促进我们对真菌生物化学的理解。这项研究不仅拓宽了已知次生代谢产物的范围,而且为未来探索灰白芽孢杆菌的生物合成能力开辟了道路。可能导致新的抗真菌化合物。我们的工作强调了整合生物信息学和基因组学对真菌研究的重要性,通过精确定位针对灰霉病的精确分子干预措施,为可持续农业实践铺平道路。本研究为进一步研究真菌的次级代谢奠定了基础。对生物技术和作物病害管理的影响。
    Utilizing bioinformatics tools, this study expands our understanding of secondary metabolism in Botrytis cinerea, identifying novel genes within polyketide synthase (PKS), non-ribosomal peptide synthetase (NRPS), sesquiterpene cyclase (STC), diterpene cyclase (DTC), and dimethylallyltryptophan synthase (DMATS) families. These findings enrich the genetic framework associated with B. cinerea\'s pathogenicity and ecological adaptation, offering insights into uncharted metabolic pathways. Significantly, the discovery of previously unannotated genes provides new molecular targets for developing targeted antifungal strategies, promising to enhance crop protection and advance our understanding of fungal biochemistry. This research not only broadens the scope of known secondary metabolites but also opens avenues for future exploration into B. cinerea\'s biosynthetic capabilities, potentially leading to novel antifungal compounds. Our work underscores the importance of integrating bioinformatics and genomics for fungal research, paving the way for sustainable agricultural practices by pinpointing precise molecular interventions against B. cinerea. This study sets a foundation for further investigations into the fungus\'s secondary metabolism, with implications for biotechnology and crop disease management.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    生殖细胞受局部微环境(壁龛)的调节,分泌有启发性的线索。保守的发育信号分子充当生态位衍生的调节因子,然而,其他类型的生态位信号仍有待识别。有性涡虫的单细胞RNA测序显示,小生境细胞表达非核糖体肽合成酶(nrps)。抑制nrps导致女性生殖器官丧失和睾丸增生。质谱检测二肽β-丙氨酰-色胺(BATT),与生殖系统发育有关,需要nrps和单胺递质合成酶芳香族L-氨基酸脱羧酶(AADC)来生产。外源性BATT在nrps或aadc抑制后拯救了生殖缺陷,恢复生育能力。因此,非核糖体,小生境细胞提供的单胺衍生肽是触发涡虫生殖发育的关键信号。这些发现揭示了单胺在小生境生殖细胞信号传导中的意想不到的功能。此外,鉴于最近报道的BATT作为女性血吸虫生殖成熟所需的男性衍生因子的作用,这些结果对寄生扁虫的进化具有重要意义,并表明非核糖体肽在其他生物中作为信号分子的潜在作用。
    Germ cells are regulated by local microenvironments (niches), which secrete instructive cues. Conserved developmental signaling molecules act as niche-derived regulatory factors, yet other types of niche signals remain to be identified. Single-cell RNA-sequencing of sexual planarians revealed niche cells expressing a nonribosomal peptide synthetase (nrps). Inhibiting nrps led to loss of female reproductive organs and testis hyperplasia. Mass spectrometry detected the dipeptide β-alanyl-tryptamine (BATT), which is associated with reproductive system development and requires nrps and a monoamine-transmitter-synthetic enzyme Aromatic L-amino acid decarboxylase (AADC) for its production. Exogenous BATT rescued the reproductive defects after nrps or aadc inhibition, restoring fertility. Thus, a nonribosomal, monoamine-derived peptide provided by niche cells acts as a critical signal to trigger planarian reproductive development. These findings reveal an unexpected function for monoamines in niche-germ cell signaling. Furthermore, given the recently reported role for BATT as a male-derived factor required for reproductive maturation of female schistosomes, these results have important implications for the evolution of parasitic flatworms and suggest a potential role for nonribosomal peptides as signaling molecules in other organisms.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    目的:临床研究表明,在相同剂量下,延长甲氨蝶呤(MTX)输注比短期输注MTX导致更严重的不良反应。我们假设在高MTX浓度下叶酸多谷氨酸合成酶(FPGS)的饱和限制了甲氨蝶呤多谷氨酸(MTX-PG)的细胞内合成速率。由于相似的积累率,较长的输注时间可能会增加MTX-PG的浓度,导致更严重的不良反应。在这项研究中,我们验证了这个假设。
    方法:用梯度浓度的MTX处理A549、BEL-7402和MHCC97H细胞系。使用液相色谱-质谱仪(UPLC-MS/MS)定量MTX-PG的细胞内浓度以及FPGS和γ-谷氨酰水解酶(GGH)的丰度。使用高质量数据来拟合细胞药代动力学模型。
    结果:细胞生长抑制率和细胞内MTX-PG浓度均与MTX浓度呈非线性关系。模型中的参数Vmax,代表MTX-PG的合成速率,与细胞内FPGS的丰度有很强的相关性。
    结论:根据模型拟合结果,证实了FPGS的丰度是限制MTX-PG合成速率的决定性因素。所提出的假设在本研究中得到了验证。此外,基于细胞内的新陈代谢,对MTX不良反应严重程度与输注时间的相关性进行了合理解释.本研究为MTX的个体化治疗和疗效/副作用预测提供了新的策略。
    OBJECTIVE: Clinical studies showed that prolonged infusion of methotrexate (MTX) leads to more severe adverse reactions than short infusion of MTX at the same dose. We hypothesized that it is the saturation of folate polyglutamate synthetase (FPGS) at high MTX concentration that limits the intracellular synthesis rate of methotrexate polyglutamate (MTX-PG). Due to a similar accumulation rate, a longer infusion duration may increase the concentration of MTX-PG and, result in more serious adverse reactions. In this study, we validated this hypothesis.
    METHODS: A549, BEL-7402 and MHCC97H cell lines were treated with MTX at gradient concentrations. Liquid chromatograph-mass spectrometer (UPLC-MS/MS) was used to quantify the intracellular concentration of MTX-PG and the abundance of FPGS and γ-glutamyl hydrolase (GGH). High quality data were used to fit the cell pharmacokinetic model.
    RESULTS: Both cell growth inhibition rate and intracellular MTX-PG concentration showed a nonlinear relationship with MTX concentration. The parameter Vmax in the model, which represents the synthesis rate of MTX-PG, showed a strong correlation with the abundance of intracellular FPGS.
    CONCLUSIONS: According to the model fitting results, it was confirmed that the abundance of FPGS is a decisive factor limiting the synthesis rate of MTX-PG. The proposed hypothesis was verified in this study. In addition, based on the intracellular metabolism, a reasonable explanation was provided for the correlation between the severity of adverse reactions of MTX and infusion time. This study provides a new strategy for the individualized treatment and prediction of efficacy/side effects of MTX.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    土壤传播的植物病原性革兰氏阴性细菌青枯病菌(RSSC)产生葡萄球菌铁蛋白B和杀微生物素作为铁载体,可清除环境中的三价铁(Fe3),取决于细胞内二价铁(Fe2+)浓度。据报道,葡萄球菌B缺陷突变体保留了其毒力,但是杀微生物素与毒力之间的关系仍未得到证实。为了阐明杀微生物素对RSSC毒力的影响,我们产生了缺乏RSc1806的micacocidin生产力缺陷型突变体(ΔRSc1806),该突变体编码推定的聚酮合成酶/非核糖体肽合成酶,使用RSSC基因型I假青枯菌菌株OE1-1。当在无Fe2+的条件下孵育时,ΔRSc1806显示出明显较低的Fe3清除活性,与OE1-1相比。直到接种番茄植物后8天,ΔRSc1806没有毒力,类似于突变体(ΔphcA)缺失phcA,其编码LysR型转录调节因子PhcA,其调节负责群体感应(QS)依赖性表型(包括毒力)的基因的表达。转录组分析显示,RSc1806缺失显着改变了在含或不含Fe2的培养基中生长的突变体中超过80%的PhcA调节基因的表达。在PhcA调节的基因中,在ΔRSc1806和phcA缺失突变体之间,其表达受RSc1806缺失影响的基因的转录水平强且正相关。此外,RSc1806的缺失显著修饰了QS依赖性表型,与phcA缺失的效果相似。总的来说,我们的发现表明,与micacocidin产生相关的RSc1806的缺失改变了对负责QS依赖性表型的PhcA调节基因的调节,包括毒力以及Fe3清除活性。[公式:见正文]版权所有©2024作者(S)。这是在CCBY-NC-ND4.0国际许可证下分发的开放访问文章。
    The soil-borne phytopathogenic gram-negative bacterium Ralstonia solanacearum species complex (RSSC) produces staphyloferrin B and micacocidin as siderophores that scavenge for trivalent iron (Fe3+) in the environment, depending on the intracellular divalent iron (Fe2+) concentration. The staphyloferrin B-deficient mutant reportedly retains its virulence, but the relationship between micacocidin and virulence remains unconfirmed. To elucidate the effect of micacocidin on RSSC virulence, we generated the micacocidin productivity-deficient mutant (ΔRSc1806) that lacks RSc1806, which encodes a putative polyketide synthase/non-ribosomal peptide synthetase, using the RSSC phylotype I Ralstonia pseudosolanacearum strain OE1-1. When incubated in the condition without Fe2+, ΔRSc1806 showed significantly lower Fe3+-scavenging activity, compared with OE1-1. Until 8 days after inoculation on tomato plants, ΔRSc1806 was not virulent, similar to the mutant (ΔphcA) missing phcA, which encodes the LysR-type transcriptional regulator PhcA that regulates the expression of the genes responsible for quorum sensing (QS)-dependent phenotypes including virulence. The transcriptome analysis revealed that RSc1806 deletion significantly altered the expression of more than 80% of the PhcA-regulated genes in the mutant grown in medium with or without Fe2+. Among the PhcA-regulated genes, the transcript levels of the genes whose expression was affected by the deletion of RSc1806 were strongly and positively correlated between the ΔRSc1806 and the phcA-deletion mutant. Furthermore, the deletion of RSc1806 significantly modified QS-dependent phenotypes, similar to the effects of the deletion of phcA. Collectively, our findings suggest that the deletion of micacocidin production-related RSc1806 alters the regulation of PhcA-regulated genes responsible for QS-dependent phenotypes including virulence as well as Fe3+-scavenging activity. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    铁载体是一类以其高铁结合能力而闻名的小分子,对所有需要铁的生命形式都是必不可少的。本文详细介绍了各种分类,铁载体的生物合成途径,特别强调通过非核糖体肽合成酶(NRPS)和非NRPS途径合成的铁载体。我们进一步探索铁载体在微生物和植物中的分泌机制,以及它们在调节生物可利用铁水平方面的作用。除了生物学功能,铁载体在医学中的应用,农业,和环境科学被广泛讨论。这些应用包括生物害虫防治,疾病治疗,生态污染修复,重金属离子去除。通过对铁载体的化学性质和生物活性的综合分析,本文展示了它们在科学研究和实际应用中的广阔前景,同时也强调了当前的研究差距和潜在的未来方向。
    Siderophores are a class of small molecules renowned for their high iron binding capacity, essential for all life forms requiring iron. This article provides a detailed review of the diverse classifications, and biosynthetic pathways of siderophores, with a particular emphasis on siderophores synthesized via nonribosomal peptide synthetase (NRPS) and non-NRPS pathways. We further explore the secretion mechanisms of siderophores in microbes and plants, and their role in regulating bioavailable iron levels. Beyond biological functions, the applications of siderophores in medicine, agriculture, and environmental sciences are extensively discussed. These applications include biological pest control, disease treatment, ecological pollution remediation, and heavy metal ion removal. Through a comprehensive analysis of the chemical properties and biological activities of siderophores, this paper demonstrates their wide prospects in scientific research and practical applications, while also highlighting current research gaps and potential future directions.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    下一代测序改变了大量基因组信息的获取,包括在宏基因组数据库中快速鉴定靶基因序列。然而,优势种有时会阻碍稀有细菌的检测。因此,本研究开发了一种高度敏感的扩增技术,可以选择性扩增含有目标基因的细菌基因组。滚环扩增(RCA)方法可以使用特异性单引物从单个基因座开始扩增以扩增特异性全基因组。使用荧光假单胞菌ATCC17400(靶向非核糖体肽合成酶[NRPS])和大肠杆菌(非靶标)制备混合细胞悬液,为NRPS设计的特异性引物用于RCA反应。所得的RCA产物(RCP)仅扩增假单胞菌基因组。使用RCP作为模板从甚至五个细胞中成功扩增NRPS,表明单引物RCA技术可以使用基因特异性引物特异性富集靶基因组。最终,这种特定的基因组RCA技术被应用于从海绵相关细菌中提取的宏基因组,和NRPS序列从未知的海绵相关细菌中成功获得。因此,这种方法可以有效地获取未知细菌中NRPS的物种特异性序列,包括有活力但不可培养的细菌。
    Next-generation sequencing has transformed the acquisition of vast amounts of genomic information, including the rapid identification of target gene sequences in metagenomic databases. However, dominant species can sometimes hinder the detection of rare bacterial species. Therefore, a highly sensitive amplification technique that can selectively amplify bacterial genomes containing target genes of interest was developed in this study. The rolling circle amplification (RCA) method can initiate amplification from a single locus using a specific single primer to amplify a specific whole genome. A mixed cell suspension was prepared using Pseudomonas fluorescens ATCC17400 (targeting nonribosomal peptide synthetase [NRPS]) and Escherichia coli (non-target), and a specific primer designed for the NRPS was used for the RCA reaction. The resulting RCA product (RCP) amplified only the Pseudomonas genome. The NRPS was successfully amplified using RCP as a template from even five cells, indicating that the single-priming RCA technique can specifically enrich the target genome using gene-specific primers. Ultimately, this specific genome RCA technique was applied to metagenomes extracted from sponge-associated bacteria, and NRPS sequences were successfully obtained from an unknown sponge-associated bacterium. Therefore, this method could be effective for accessing species-specific sequences of NRPS in unknown bacteria, including viable but non-culturable bacteria.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    丰霉素是脂肽家族的重要成员,在农业上有着广泛的应用,食物,医疗和化妆品行业。然而,低生产率和高成本严重阻碍了其商业应用。因此,许多研究已经致力于提高芬霉素的产量。本文对这些研究进行综述,旨在为今后的研究人员提供参考和指导。本文首先概述了通过非核糖体肽合成酶(NRPS)合成芬霉素的机理,然后深入研究了近年来提高fengycin产量的策略。这些策略主要包括发酵优化和代谢工程,代谢工程包括增加前体供应,调节因子的应用,启动子工程,基因组工程(基因组改组和基因组尺度代谢网络模型)的应用。最后,最后,我们对fengycin的生产进行了展望。
    Fengycin is an important member of the lipopeptide family with a wide range of applications in the agricultural, food, medical and cosmetic industries. However, its commercial application is severely hindered by low productivity and high cost. Therefore, numerous studies have been devoted to improving the production of fengycin. We summarize these studies in this review with the aim of providing a reference and guidance for future researchers. This review begins with an overview of the synthesis mechanism of fengycin via the non-ribosomal peptide synthetases (NRPS), and then delves into the strategies for improving the fengycin production in recent years. These strategies mainly include fermentation optimization and metabolic engineering, and the metabolic engineering encompasses enhancement of precursor supply, application of regulatory factors, promoter engineering, and application of genome-engineering (genome shuffling and genome-scale metabolic network model). Finally, we conclude this review with a prospect of fengycin production.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号