Penicillium brasilianum

  • 文章类型: Journal Article
    二酮哌嗪生物碱已被证明是迄今为止最丰富的杂环生物碱,它通常处理多种支架和丰富的生物活性。在我们从海洋真菌中寻找生物活性二酮哌嗪生物碱的过程中,两种新的二酮哌嗪生物碱,哌嗪A(1)及其生物相关的新代谢产物(2),连同已知的类似物新菲哌嗪C(3),从菌株巴西青霉获得。通过广泛的光谱分析阐明了它们的平面结构和绝对构型,13C核磁共振计算,Marfey\'s,ECD,和ORD方法。化合物1具有独特的6/5/6/6/5吲哚-吡嗪并-吡嗪并-吡咯系统,并提出了其合理的生物遗传途径。此外,已经测试了化合物1-3的炎症活性。1和2显著抑制LPS刺激的RAW264.7细胞NO的释放和相关促炎细胞因子的表达,这表明它们可能是进一步开发抗炎药的候选药物。关键点:•从海洋真菌巴西青霉分离出具有独特的6/5/6/6/5吲哚-吡嗪-吡嗪基-吡咯系统的新型二酮哌嗪生物碱。•通过对2DNMR数据的详细分析阐明了1的结构,13C核磁共振计算,Marfey\'s,ECD,和ORD方法。•化合物1和2显著抑制LPS刺激的RAW264.7细胞上NO的释放和相关促炎细胞因子的表达。
    Diketopiperazine alkaloids have proven the most abundant heterocyclic alkaloids up to now, which usually process diverse scaffolds and rich biological activities. In our search for bioactive diketopiperazine alkaloids from marine-derived fungi, two novel diketopiperazine alkaloids, penipiperazine A (1) and its biogenetically related new metabolite (2), together with a known analogue neofipiperzine C (3), were obtained from the strain Penicillium brasilianum. Their planar structures and absolute configurations were elucidated by extensive spectroscopic analyses, 13C NMR calculation, Marfey\'s, ECD, and ORD methods. Compound 1 featured a unique 6/5/6/6/5 indole-pyrazino-pyrazino-pyrrolo system, and its plausible biogenetic pathway was also proposed. Additionally, compounds 1-3 have been tested for their inflammatory activities. 1 and 2 significantly inhibited the release of NO and the expression of related pro-inflammatory cytokines on LPS-stimulated RAW264.7 cells, suggesting they could be attracting candidate for further development as anti-inflammatory agent. KEY POINTS: • A novel diketopiperazine alkaloid featuring a unique 6/5/6/6/5 indole-pyrazino-pyrazino-pyrrolo system was isolated from the marine fungus Penicillium brasilianum. • The structure of 1 was elucidated by detailed analysis of 2D NMR data, 13C NMR calculation, Marfey\'s, ECD, and ORD methods. • Compounds 1 and 2 significantly inhibited the release of NO and the expression of related pro-inflammatory cytokines on LPS-stimulated RAW264.7 cells.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    淀粉样欧文氏菌是火疫病的病原体,影响苹果,梨,和其他的玫瑰属植物.目前,火灾疫病的管理依赖于文化和化学实践,而众所周知,很少有生物资源对火灾疫病表现出疾病控制功效。在目前的研究中,我们发现,一个SFC20201208-M01真菌分离株对淀粉芽孢杆菌TS3128具有抗菌活性,并且该分离株根据β-微管蛋白(BenA)基因序列被鉴定为巴西青霉。为了从巴西疟原虫培养物中鉴定活性化合物,将培养滤液依次用乙酸乙酯和正丁醇分配。从乙酸乙酯层,根据光谱分析和文献数据比较,我们确定了两个新化合物(化合物3-4)和两个已知化合物(化合物1-2)。在这些活性化合物中,青霉酸(1)对淀粉芽孢杆菌TS3128具有良好的抗菌活性,最小抑制浓度值为25μg/ml。将培养滤液和青霉酸(125μg/ml)施用到中国珍珠叶蟹苹果幼苗上,然后再接种沙棘TS3128,有效地抑制了处理过的植物中火疫病的发展。我们的结果为具有控制火疫病的活性成分的巴西疫霉SFC20201208-M01的生物防治潜力提供了新的见解。
    Erwinia amylovora is a causative pathogen of fire blight disease, affecting apple, pear, and other rosaceous plants. Currently, management of fire blight relies on cultural and chemical practices, whereas it has been known that few biological resources exhibit disease control efficacy against the fire blight. In the current study, we found that an SFC20201208-M01 fungal isolate exhibits antibacterial activity against E. amylovora TS3128, and the isolate was identified as a Penicillium brasilianum based on the β-tubulin (BenA) gene sequence. To identify active compounds from the P. brasilianum culture, the culture filtrate was partitioned with ethyl acetate and n-butanol sequentially. From the ethyl acetate layer, we identified two new compounds (compounds 3-4) and two known compounds (compounds 1-2) based on spectroscopic analyses and comparison with literature data. Of these active compounds, penicillic acid (1) exhibited promising antibacterial activity against E. amylovora TS3128 with a minimal inhibitory concentration value of 25 μg/ml. When culture filtrate and penicillic acid (125 μg/ml) were applied onto Chinese pearleaf crab apple seedlings prior to inoculation of E. amylovora TS3128, the development of fire blight disease was effectively suppressed in the treated plants. Our results provide new insight into the biocontrol potential of P. brasilianum SFC20201208-M01 with an active ingredient to control fire blight.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    Identification and analysis of the whole genome of the marine-derived fungus Penicillium brasilianum HBU-136 revealed the presence of an interesting biosynthetic gene cluster (BGC) for non-ribosomal peptide synthetases (NRPS), highly homologous to the BGCs of indole-diketopiperazine derivatives. With the aid of genomic analysis, eight indole-diketopiperazines (1-8), including three new compounds, spirotryprostatin G (1), and cyclotryprostatins F and G (2 and 3), were obtained by large-scale cultivation of the fungal strain HBU-136 using rice medium with 1.0% MgCl2. The absolute configurations of 1-3 were determined by comparison of their experimental electronic circular dichroism (ECD) with calculated ECD spectra. Selective cytotoxicities were observed for compounds 1 and 4 against HL-60 cell line with the IC50 values of 6.0 and 7.9 μM, respectively, whereas 2, 3, and 5 against MCF-7 cell line with the IC50 values of 7.6, 10.8, and 5.1 μM, respectively.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    In this study, the consumption of 4-bromobenzoic acid and 4-chlorobenzoic acid by the fungus Penicillium brasilianum, an endophyte from Melia azedarach is evaluated. This fungus metabolizes these halobenzoic acids to produce three new brominated compounds, which have been isolated and characterized, and three new chlorinated derivatives identified by HRMS. Among these products, (4-bromobenzoyl)proline has been also chemically synthesized and employed in biological assays, thus providing insights for the elucidation of the defense mechanism of P. brasilianum towards these halobenzoic acids.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    3,5-Dimethylorsellinic acid (DMOA) derived meroterpenoids comprise an unique class of natural products with diverse scaffolds and with a broad spectrum of bioactivities. Bioinformatics analysis of the gene clusters in association with the qRT-PCR detection of the amplification of two key genes led to speculate that the sponge associated fungus Penicillium brasilianum WZXY-m122-9 is a potential producer of meroterpenoids. Chromatographic separation of the EtOAc extract of this fungal strain on a large-scale fermentation resulted in the isolation of six new DMOA-related meroterpenoids with trivial names of brasilianoids A-F (1-6), together with preaustinoid D and preaustinoid A2. The structures were determined by extensive analyses of spectroscopic data, including the X-ray diffraction and the ECD data for configurational assignment. Brasilianoids A and F showed an unprecedented skeleton with a γ-lactone in ring A, while brasilianoids B-C featured a 7/6/6/5/5 pentacyclic ring system finding in nature for the first time. The biosynthetic relationship among the isolated compounds was postulated. Compound 1 significantly stimulated the expression of filaggrin and caspase-14 in HaCaT cells in dose-dependent manner, while compounds 2 and 3 showed moderate inhibition against NO production in LPS-induced RAW 264.7 macrophages.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    Over the past few years Penicillium brasilianum has been isolated from many different environmental sources as soil isolates, plant endophytes and onion pathogen. All investigated strains share a great ability to produce bioactive secondary metabolites. Different authors have investigated this great capability and here we summarize the metabolic potential and the biological activities related to P. brasilianum\'s metabolites with diverse structures. They include secondary metabolites of an alkaloid nature, i.e., 2,5-diketopiperazines, cyclodepsipeptides, meroterpenoids and polyketides. Penicillium brasilianum is also described as a great source of enzymes with biotechnological application potential, which is also highlighted in this review. Additionally, this review will focus on several aspects of Penicillium brasilianum and interesting genomic insights.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    Functionalizations of cycloadducts are important steps for the use of Diels-Alder reactions in the construction of complex cyclic or polycyclic molecules from relatively simple starting materials. In the present work, we studied the ability of Penicillium brasilianum to perform microbial transformations of racemic Diels-Alder endo-cycloadducts. Thus, Diels-Alder products, obtained from reacting cyclopentadiene or 2,3-dimethylbutadiene with alkylated para-benzoquinones, were transformed by the resting cells of P. brasilianum producing new functionalized polycyclic compounds. These biotransformations yielded novel products of oxidation and ring closure, reduction of the C=C or C=O in [Formula: see text]-unsaturated system, and allylic hydroxylations. The reduction products (conjugated double bond and carbonyl group) were also synthesized, and the enantioselectivity of both in vitro and in vivo processes was evaluated. In all cases, the microbiological transformations were enantioselective. In silico docking studies of the Diels-Alder cycloadducts with P. brasilianum oxidoreductase \"old yellow enzymes\" shed more light on these transformations.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    The aim of this research was the partial characterization of polygalacturonase (PG) extracts produced by a newly isolated Penicillium brasilianum and Aspergillus niger in submerged fermentation. The partial characterization of the crude enzymatic extracts showed optimum activity at pH 5.5 and 37 °C for both extracts. The results of temperature stability showed that PG from both microorganisms were more stable at 55 °C. However, the enzyme obtained by P. brasilianum presents a half-life time (t 1/2 = 693.10 h), about one order of magnitude higher than those observed in for A. niger at 55 °C. In terms of pH stability, the PG produced by P. brasilianum presented higher stability at pH 4.0 and 5.0, while the PG from A. niger showed higher stability at pH 5.0.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    Six known compounds, isoroquefortine C (1), griseofulvin (2), ergosterol peroxide (3), 3β-hydroxy-(22E,24R)-ergosta-5,8,22-trien-7-one (4), cerevisterol (5) and (22E,24R)-6β-methoxyergosta-7,22-diene-3β,5α-diol (6), were produced by the fungus Penicillium brasilianum, and their structures were elucidated by spectroscopic methods. This is the first report on isoroquefortine C as naturally occurring compound. Their bioactivities against five phytopathogenic fungi (Gibeberalla saubinetti, Fusarium solani, Botrytis cinerea, Colletotrichum gloeosporioides and Alternaria solani) and four pathogenic bacteria (Escherichia coli, Bacillus subtilis, Staphyloccocus aureus and Bacillus cereus), as well as allelopathic activities on Raphanus sativus were tested. Compound 1 exhibited a remarkable antifungal activity with minimum inhibitory concentration (MIC) of 12.5 μM against C. gloeosporioides, in comparison with positive control hymexazol (MIC 25 μM). Compound 2 displayed strong inhibitory effects on the growth of A. solani and S. aureus with MIC of 3.13 μM for each. Compounds 2 and 3 displayed a significant growth-inhibition activity on R. sativus.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号