Paracoccidioides species

  • 文章类型: Journal Article
    拉丁美洲的副球菌病(PCM)的发病率各不相同,它受到环境因素的影响。这项研究评估了南马托格罗索(MS)状态下PCM急性/亚急性形式(AF)病例的分布及其与地气候因素的相关性。该研究包括1980年1月至2022年2月在南马托格罗索联邦大学大学医院诊断为PCM/AF的81例患者。地理坐标,患者居住地的健康微区域,补偿平均温度,相对空气湿度(RH),厄尔尼诺南方涛动(ENSO)并对全球平均气温进行了分析。在Aquidauana(7/100,000居民)中发病率最高,而CampoGrande,该州的首都,病例数(n=34;42.4%)和密度(4.4例/km2)最高。在厄尔尼诺现象的长期期间,病例数量有所增加。发现较高的RH与PCM/AF病例之间呈正相关。大多数PCM/AF病例是在肥沃的土壤和RH范围为60.8至73.6%的地区发现的。在MS中,PCM/AF患者的健康微区域的特征是用于农业和牧场的森林砍伐,再加上肥沃的土壤和特定的气候现象,导致土壤湿度较高。
    The incidence of paracoccidioidomycosis (PCM) varies in Latin America, and it is influenced by environmental factors. This study evaluated the distribution of PCM acute/subacute form (AF) cases and their correlation with geoclimatic factors in the Mato Grosso do Sul (MS) state. The study included 81 patients diagnosed with the PCM/AF at the University Hospital of the Federal University of Mato Grosso do Sul between January 1980 and February 2022. Geographic coordinates, health microregion of patient\'s residence, compensated average temperature, relative air humidity (RH), El Niño Southern Oscillation (ENSO), and average global temperature were analyzed. The highest incidence was observed in the Aquidauana (7/100,000 inhabitants), while Campo Grande, the state\'s capital, had the highest number (n = 34; 42.4%) and density (4.4 cases/km2) of cases. The number of cases increased during extended periods of the El Niño phenomenon. A positive correlation was found between higher RH and PCM/AF cases. Most PCM/AF cases were found in areas with loamy soils and RH ranging from 60.8 to 73.6%. In MS, the health microregions of PCM/AF patients are characterized by deforestation for agricultural and pasture use, coupled with loamy soils and specific climatic phenomena leading to higher soil humidity.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    Paracoccidioidomycosis (PCM) is the most prevalent endemic mycosis in Latin America. The disease is caused by fungi of the genus Paracoccidioides and mainly affects low-income rural workers after inhalation of fungal conidia suspended in the air. The current arsenal of chemotherapeutic agents requires long-term administration protocols. In addition, chemotherapy is related to a significantly increased frequency of disease relapse, high toxicity, and incomplete elimination of the fungus. Due to the limitations of current anti-PCM drugs, we developed a computational drug repurposing-chemogenomics approach to identify approved drugs or drug candidates in clinical trials with anti-PCM activity. In contrast to the one-drug-one-target paradigm, our chemogenomics approach attempts to predict interactions between drugs, and Paracoccidioides protein targets. To achieve this goal, we designed a workflow with the following steps: (a) compilation and preparation of Paracoccidioides spp. genome data; (b) identification of orthologous proteins among the isolates; (c) identification of homologous proteins in publicly available drug-target databases; (d) selection of Paracoccidioides essential targets using validated genes from Saccharomyces cerevisiae; (e) homology modeling and molecular docking studies; and (f) experimental validation of selected candidates. We prioritized 14 compounds. Two antineoplastic drug candidates (vistusertib and BGT-226) predicted to be inhibitors of phosphatidylinositol 3-kinase TOR2 showed antifungal activity at low micromolar concentrations (<10 μM). Four antifungal azole drugs (bifonazole, luliconazole, butoconazole, and sertaconazole) showed antifungal activity at low nanomolar concentrations, validating our methodology. The results suggest our strategy for predicting new anti-PCM drugs is useful. Finally, we could recommend hit-to-lead optimization studies to improve potency and selectivity, as well as pharmaceutical formulations to improve oral bioavailability of the antifungal azoles identified.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    Paracoccidioides is a thermodimorphic fungus that causes Paracoccidioidomycosis (PCM) - an endemic systemic mycosis in Latin America. The genus comprises several phylogenetic species which present some genetic and serological differences. The diversity presented among isolates of the same genus has been explored in several microorganisms. There have also been attempts to clarify differences that might be related to virulence existing in isolates that cause the same disease. In this work, we analyzed the secretome of two isolates in the Paracoccidioides genus, isolates Pb01 and PbEpm83, and performed infection assays in macrophages to evaluate the influence of the secretomes of those isolates upon an in vitro model of infection. The use of a label-free proteomics approach (LC-MSE) allowed us to identify 92 proteins that are secreted by those strains. Of those proteins, 35 were differentially secreted in Pb01, and 36 in PbEpm83. According to the functional annotation, most of the identified proteins are related to adhesion and virulence processes. These results provide evidence that different members of the Paracoccidioides complex can quantitatively secrete different proteins, which may influence the characteristics of virulence, as well as host-related processes.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

公众号