PHBV, poly(3-hydroxybutyrate-co-3-hydroxyvalerate)

PHBV,聚 (3 - 羟基丁酸酯 - co - 3 - 羟基戊酸酯)
  • 文章类型: Journal Article
    2019年冠状病毒病(COVID-19)的大流行使生物织物,包括口罩和防护服,在我们的日常生活中非常熟悉。生物织物是超出我们想象的一类广泛的纺织品。目前,生物织物已被常规用于各种生物医学领域,比如日常保护,伤口愈合,组织再生,药物输送,和感应,改善个人的健康和医疗条件。然而,这些生物织物通常用直径为微米级(>10μm)的纤维制造。最近,纳米纤维材料由于纳米直径的纤维表现出明显优越的性能,在纤维科学和纺织工程领域引起了广泛的关注,如尺寸和表面/界面效应以及光学,电气,机械,和生物学特性,与微纤维相比。创新的静电纺丝技术和传统的纺织品成型策略的结合为纳米纤维生物织物的产生打开了新的窗口,以更新和更新传统的微纤维生物织物。在过去的二十年里,传统的静电纺丝装置已经被广泛地改进以产生纤维直径小于1000nm的纳米纤维纱线(NYs)。电纺NYs可以进一步用作主要加工单元,用于使用各种纺织品形成策略制造新一代纳米纺织品。在这次审查中,从常规静电纺丝技术的基本信息开始,我们总结了用于NY制造的创新静电纺丝策略,并批判性地讨论了它们的优势和局限性。这篇综述进一步涵盖了基于NY的静电纺丝纳米织物的构建进展及其在生物医学领域的最新应用。主要包括外科缝合,用于组织工程的各种支架和植入物,智能可穿戴生物电子学,以及它们在COVID-19大流行中的当前和潜在应用。最后,这篇综述强调并确定了用于临床的静电纺丝NYs和基于NY的纳米织物的未来需求和机会.
    The pandemic of the coronavirus disease 2019 (COVID-19) has made biotextiles, including face masks and protective clothing, quite familiar in our daily lives. Biotextiles are one broad category of textile products that are beyond our imagination. Currently, biotextiles have been routinely utilized in various biomedical fields, like daily protection, wound healing, tissue regeneration, drug delivery, and sensing, to improve the health and medical conditions of individuals. However, these biotextiles are commonly manufactured with fibers with diameters on the micrometer scale (> 10 μm). Recently, nanofibrous materials have aroused extensive attention in the fields of fiber science and textile engineering because the fibers with nanoscale diameters exhibited obviously superior performances, such as size and surface/interface effects as well as optical, electrical, mechanical, and biological properties, compared to microfibers. A combination of innovative electrospinning techniques and traditional textile-forming strategies opens a new window for the generation of nanofibrous biotextiles to renew and update traditional microfibrous biotextiles. In the last two decades, the conventional electrospinning device has been widely modified to generate nanofiber yarns (NYs) with the fiber diameters less than 1000 nm. The electrospun NYs can be further employed as the primary processing unit for manufacturing a new generation of nano-textiles using various textile-forming strategies. In this review, starting from the basic information of conventional electrospinning techniques, we summarize the innovative electrospinning strategies for NY fabrication and critically discuss their advantages and limitations. This review further covers the progress in the construction of electrospun NY-based nanotextiles and their recent applications in biomedical fields, mainly including surgical sutures, various scaffolds and implants for tissue engineering, smart wearable bioelectronics, and their current and potential applications in the COVID-19 pandemic. At the end, this review highlights and identifies the future needs and opportunities of electrospun NYs and NY-based nanotextiles for clinical use.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    随着对环境和能源的关注,脂质的微生物生产是化石资源的有希望的替代品之一。奇数链脂肪酸(OCFA),一种不寻常的脂质,作为微生物生产中的目标化合物,由于它们在医学中的不同应用,Pharmaceutical,和化学工业。在这项研究中,我们旨在增强具有三碳链(丙酰基-CoA)和五碳链(β-酮戊酰-CoA)的前体库,以在Yarrowialipolypolytica中生产OCFA。我们评估了不同的丙酸激活酶,过表达富营养菌丙酰辅酶A转移酶基因使OCFA的积累比对照菌株增加了3.8倍。表明丙酸酯活化是OCFAs合成的限制步骤。研究表明,乙酸盐补充剂对于恢复生长和在总脂质中产生更高的OCFA含量是必要的,表明乙酰辅酶A和丙酰基辅酶A之间前体的平衡对于OCFA的积累至关重要。为了改善β-酮戊酰辅酶A库,进一步提高OCFA产量,我们在生产菌株中共表达了编码β-酮硫解酶的bktB,与对照相比,OCFA产量增加了33%。将菌株工程和C/N比的优化相结合,将OCFA的产量提高到1.87g/L,占总脂质的62%。酵母中报道的最高重组OCFAs滴度,到目前为止。这项研究为微生物生产OCFAs及其衍生物提供了坚实的基础,这些衍生物在广泛的应用中具有很高的潜力。
    Microbial production of lipids is one of the promising alternatives to fossil resources with increasing environmental and energy concern. Odd-chain fatty acids (OCFA), a type of unusual lipids, are recently gaining a lot of interest as target compounds in microbial production due to their diverse applications in the medical, pharmaceutical, and chemical industries. In this study, we aimed to enhance the pool of precursors with three-carbon chain (propionyl-CoA) and five-carbon chain (β-ketovaleryl-CoA) for the production of OCFAs in Yarrowia lipolytica. We evaluated different propionate-activating enzymes and the overexpression of propionyl-CoA transferase gene from Ralstonia eutropha increased the accumulation of OCFAs by 3.8 times over control strain, indicating propionate activation is the limiting step of OCFAs synthesis. It was shown that acetate supplement was necessary to restore growth and to produce a higher OCFA contents in total lipids, suggesting the balance of the precursors between acetyl-CoA and propionyl-CoA is crucial for OCFA accumulation. To improve β-ketovaleryl-CoA pools for further increase of OCFA production, we co-expressed the bktB encoding β-ketothiolase in the producing strain, and the OCFA production was increased by 33% compared to control. Combining strain engineering and the optimization of the C/N ratio promoted the OCFA production up to 1.87 ​g/L representing 62% of total lipids, the highest recombinant OCFAs titer reported in yeast, up to date. This study provides a strong basis for the microbial production of OCFAs and its derivatives having high potentials in a wide range of applications.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

公众号