PET, fluorodeoxyglucose (FDG)-positron emission tomography

  • 文章类型: Journal Article
    到目前为止,衰老是阿尔茨海默病(AD)最突出的危险因素,衰老和AD都与明显的代谢改变有关。由于开发有效的治疗干预措施来治疗AD显然是迫切需要的,在临床前模型和人类患者中调节全身和细胞内代谢的影响,关于疾病的发病机理,已经被探索过了。人们对与生物性别有关的不同风险和潜在目标策略的认识也越来越高,微生物组,和昼夜节律调节。作为细胞内代谢的重要组成部分,线粒体生物能学,线粒体质量控制机制,和线粒体相关的炎症反应已被考虑用于AD治疗干预。这篇综述总结并强调了这些努力。
    Aging is by far the most prominent risk factor for Alzheimer\'s disease (AD), and both aging and AD are associated with apparent metabolic alterations. As developing effective therapeutic interventions to treat AD is clearly in urgent need, the impact of modulating whole-body and intracellular metabolism in preclinical models and in human patients, on disease pathogenesis, have been explored. There is also an increasing awareness of differential risk and potential targeting strategies related to biological sex, microbiome, and circadian regulation. As a major part of intracellular metabolism, mitochondrial bioenergetics, mitochondrial quality-control mechanisms, and mitochondria-linked inflammatory responses have been considered for AD therapeutic interventions. This review summarizes and highlights these efforts.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

公众号