PA, Palmitate

PA,棕榈酸盐
  • 文章类型: Journal Article
    最近,Nrf2/HO-1作为细胞内防御氧化应激的主要调控途径受到广泛关注,被认为是减轻内皮细胞损伤的理想靶点。
    本文旨在总结在ECs中潜在发挥抗氧化应激保护作用的天然单体/提取物。
    对我们的主题进行了文献检索,关键词为“动脉粥样硬化”或“Nrf2/HO-1”或“血管内皮细胞”或“氧化应激”或“草药”或“天然产物”或“天然提取物”或“天然化合物”或“中药”,基于草药经典书籍和科学数据库,包括Pubmed,SciFinder,Scopus,WebofScience,GoogleScholar,BaiduScholar,和其他人。然后,我们分析了不同类型的天然化合物通过保护血管内皮细胞免受氧化应激来治疗动脉粥样硬化的可能分子机制。此外,讨论了未来可能的研究前景。
    这些在ECs中对氧化应激具有保护作用的药物主要包括苯丙素类化合物,黄酮类化合物,萜类化合物,和生物碱。这些药物中的大多数缓解了由于氧化应激导致的ECs细胞凋亡,并且该机制与Nrf2/HO-1信令激活有关。然而,尽管通过激活Nrf2/HO-1信号发挥针对EC损伤的保护作用的天然药物的各个方面的研究不断取得进展,基于这些药物开发治疗动脉粥样硬化(AS)和其他心血管疾病的新药需要更详细的临床前和临床研究.
    我们的本文提供了通过激活Nrf2/HO-1对ECs抵抗氧化应激具有保护活性的天然试剂的最新信息。我们希望这篇综述将为进一步开发用于治疗AS和其他CVD的天然药物的新型候选药物提供一些方向。
    Recently, Nrf2/HO-1 has received extensive attention as the main regulatory pathway of intracellular defense against oxidative stress and is considered an ideal target for alleviating endothelial cell (EC) injury.
    This paper aimed to summarized the natural monomers/extracts that potentially exert protective effects against oxidative stress in ECs.
    A literature search was carried out regarding our topic with the keywords of \"atherosclerosis\" or \"Nrf2/HO-1\" or \"vascular endothelial cells\" or \"oxidative stress\" or \"Herbal medicine\" or \"natural products\" or \"natural extracts\" or \"natural compounds\" or \"traditional Chinese medicines\" based on classic books of herbal medicine and scientific databases including Pubmed, SciFinder, Scopus, the Web of Science, GoogleScholar, BaiduScholar, and others. Then, we analyzed the possible molecular mechanisms for different types of natural compounds in the treatment of atherosclerosis via the protection of vascular endothelial cells from oxidative stress. In addition, perspectives for possible future studies are discussed.
    These agents with protective effects against oxidative stress in ECs mainly include phenylpropanoids, flavonoids, terpenoids, and alkaloids. Most of these agents alleviate cell apoptosis in ECs due to oxidative stress, and the mechanisms are related to Nrf2/HO-1 signaling activation. However, despite continued progress in research on various aspects of natural agents exerting protective effects against EC injury by activating Nrf2/HO-1 signaling, the development of new drugs for the treatment of atherosclerosis (AS) and other CVDs based on these agents will require more detailed preclinical and clinical studies.
    Our present paper provides updated information of natural agents with protective activities on ECs against oxidative stress by activating Nrf2/HO-1. We hope this review will provide some directions for the further development of novel candidate drugs from natural agents for the treatment of AS and other CVDs.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    The function of the stress-responsive N-myc downstream-regulated gene 2 (NDRG2) in the control of myoblast growth, and the amino acids contributing to its function, are not well characterized. Here, we investigated the effect of increased NDRG2 levels on the proliferation, differentiation and apoptosis in skeletal muscle cells under basal and stress conditions. NDRG2 overexpression increased C2C12 myoblast proliferation and the expression of positive cell cycle regulators, cdk2, cyclin B and cyclin D, and phosphorylation of Rb, while the serine/threonine-deficient NDRG2, 3A-NDRG2, had less effect. The onset of differentiation was enhanced by NDRG2 as determined through the myogenic regulatory factor expression profiles and myocyte fusion index. However, the overall level of differentiation in myotubes was not different. While NDRG2 up-regulated caspase 3/7 activities during differentiation, no increase in apoptosis was measured by TUNEL assay or through cleavage of caspase 3 and PARP proteins. During H2O2 treatment to induce oxidative stress, NDRG2 helped protect against the loss of proliferation and ER stress as measured by GRP78 expression with 3A-NDRG2 displaying less protection. NDRG2 also attenuated apoptosis by reducing cleavage of PARP and caspase 3 and expression of pro-apoptotic Bax while enhancing the pro-survival Bcl-2 and Bcl-xL levels. In contrast, Mcl-1 was not altered, and NDRG2 did not protect against palmitate-induced lipotoxicity. Our findings show that NDRG2 overexpression increases myoblast proliferation and caspase 3/7 activities without increasing overall differentiation. Furthermore, NDRG2 attenuates H2O2-induced oxidative stress and specific serine and threonine amino acid residues appear to contribute to its function in muscle cells.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    棕榈酸超负荷诱导肝细胞功能障碍,其特征是细胞凋亡增强和柠檬酸循环(CAC)代谢改变;然而,这种情况的发生机制还不完全清楚。我们假设高剂量的棕榈酸破坏细胞内钙稳态,导致钙从ER到线粒体的净通量,激活异常氧化代谢。我们用棕榈酸酯和钙螯合剂处理原代肝细胞和H4IIEC3细胞,以确定细胞内钙通量在脂毒性中的作用。然后,我们应用(13)C代谢通量分析(MFA)来确定钙在促进棕榈酸酯刺激的线粒体改变中的影响。与钙特异性螯合剂BAPTA的共处理导致细胞凋亡和氧消耗的标志物的抑制。此外,(13)CMFA揭示,与单独用棕榈酸酯处理的细胞相比,BAPTA共处理的细胞具有降低的CAC通量。我们的结果表明,棕榈酸诱导的脂凋亡依赖于钙刺激的线粒体激活,诱导氧化应激。
    Palmitate overload induces hepatic cell dysfunction characterized by enhanced apoptosis and altered citric acid cycle (CAC) metabolism; however, the mechanism of how this occurs is incompletely understood. We hypothesize that elevated doses of palmitate disrupt intracellular calcium homeostasis resulting in a net flux of calcium from the ER to mitochondria, activating aberrant oxidative metabolism. We treated primary hepatocytes and H4IIEC3 cells with palmitate and calcium chelators to identify the roles of intracellular calcium flux in lipotoxicity. We then applied (13)C metabolic flux analysis (MFA) to determine the impact of calcium in promoting palmitate-stimulated mitochondrial alterations. Co-treatment with the calcium-specific chelator BAPTA resulted in a suppression of markers for apoptosis and oxygen consumption. Additionally, (13)C MFA revealed that BAPTA co-treated cells had reduced CAC fluxes compared to cells treated with palmitate alone. Our results demonstrate that palmitate-induced lipoapoptosis is dependent on calcium-stimulated mitochondrial activation, which induces oxidative stress.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

公众号