Ocular magnification

眼睛放大
  • 暂无摘要。
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    背景:视网膜神经纤维的定量分析对于视神经疾病的诊断和治疗具有重要意义。与RNFL厚度相比,乳头周围视网膜神经纤维层(RNFL)横截面积可以更准确地定量评估视网膜神经纤维,但以前没有关于乳头周围RNFL横截面积或其他参数的报道。本研究的目的是确定中国成年人群的乳头周围RNFL横截面积及其与其他因素的关系。
    方法:在以视盘为中心的直径为12°的乳头周围圆形光学相干断层扫描(OCT)扫描过程中测量RNFL横截面积。在一项针对中国成年人口的横断面研究中,通过线性回归分析评估了RNFL横截面积与其他参数之间的相关性。
    结果:共检查了2404名受试者的2404只眼。多元线性回归分析显示,RNFL横截面积大与年龄小相关(p<0.001),女性(p=0.001),无糖尿病史(p=0.012)和较大的视盘面积(p<0.001)。
    结论:乳头周围RNFL横截面面积与视盘面积呈正相关,提示视盘较大的眼睛有较厚的RNFL。需要进一步的研究来确认这种相关性是否是由于视网膜神经纤维数量或其他因素的差异。
    BACKGROUND: Quantitative analysis of retinal nerve fibers is important for the diagnosis and treatment of optic nerve diseases. Peripapillary retinal nerve fiber layer (RNFL) cross-sectional area may give a more accurate quantitative assessment of retinal nerve fibers than RNFL thickness but there have been no previous reports of the peripapillary RNFL cross-sectional area or other parameters. The purpose of the current study was to determine peripapillary RNFL cross-sectional area and its association with other factors in an adult Chinese population.
    METHODS: RNFL cross-sectional area was measured during peripapillary circular optical coherence tomography (OCT) scan with a diameter of 12° centered on the optic disc. Correlation between RNFL cross-sectional area and other parameters was evaluated by linear regression analysis in a cross-sectional study of an adult Chinese population.
    RESULTS: A total of 2404 eyes from 2404 subjects were examined. Multivariate linear regression analysis showed that larger RNFL cross-sectional area correlated with younger age (p < 0.001), female gender (p = 0.001), no history of diabetes (p = 0.012) and larger optic disc area (p < 0.001).
    CONCLUSIONS: Peripapillary RNFL cross-sectional area is correlated positively with optic disc area, suggesting that eyes with larger optic discs have thicker RNFL. Further studies are needed to confirm whether this correlation is due to differences in the numbers of retinal nerve fibers or other factors.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 暂无摘要。
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    背景:Phakic镜头(PIOL,最常见且唯一公开的类型是可植入的Collamer晶状体,在激光屈光手术禁忌的情况下,ICL)用于较大或过度屈光不正的患者。这项研究的目的是提出一种基于眼前段OCT数据的策略,用于计算ICL植入后的屈光校正(REF)和横向放大倍数(ΔM)的变化。
    方法:基于包含Casia2测量值的数据集(N=3659),我们开发了一种基于聚散度的计算方案,以在植入具有功率PIOLP的PIOL时得出REF和ΔM的增益或损失。计算概念基于角膜和PIOL的厚或薄透镜模型。在蒙特卡罗模拟中,考虑到,在美国专利5,913,898中列出的所有PIOL步骤中,为每个PIOL数据点定义REF和ΔM的非线性回归模型。
    结果:计算表明,将PIOL简化为薄透镜可能会导致具有高正焦度的PIOL的REF(高达½dpt)和ΔM出现一些不准确。所列出的ICL功率的全部范围(-17至17dpt)可以在从-17至12dpt的范围内校正REF,其中ΔM从17至-25%变化。考虑眼前节生物特征数据和PIOLP的线性回归无法正确表征REF和ΔM,而PIOLP具有二次项的非线性模型对REF和ΔM预测均具有良好的性能。
    结论:如果有PIOL设计数据,计算概念应将PIOL视为厚透镜模型。日常使用,如果无法进行聚散度计算,则非线性回归模型可以正确预测整个PIOL步骤范围的REF和ΔM。
    BACKGROUND: Phakic lenses (PIOLs, the most common and only disclosed type being the implantable collamer lens, ICL) are used in patients with large or excessive ametropia in cases where laser refractive surgery is contraindicated. The purpose of this study was to present a strategy based on anterior segment OCT data for calculating the refraction correction (REF) and the change in lateral magnification (ΔM) with ICL implantation.
    METHODS: Based on a dataset (N = 3659) containing Casia 2 measurements, we developed a vergence-based calculation scheme to derive the REF and gain or loss in ΔM on implantation of a PIOL having power PIOLP. The calculation concept is based on either a thick or thin lens model for the cornea and the PIOL. In a Monte-Carlo simulation considering, all PIOL steps listed in the US patent 5,913,898, nonlinear regression models for REF and ΔM were defined for each PIOL datapoint.
    RESULTS: The calculation shows that simplifying the PIOL to a thin lens could cause some inaccuracies in REF (up to ½ dpt) and ΔM for PIOLs with high positive power. The full range of listed ICL powers (- 17 to 17 dpt) could correct REF in a range from - 17 to 12 dpt with a change in ΔM from 17 to - 25%. The linear regression considering anterior segment biometric data and the PIOLP was not capable of properly characterizing REF and ΔM, whereas the nonlinear model with a quadratic term for the PIOLP showed a good performance for both REF and ΔM prediction.
    CONCLUSIONS: Where PIOL design data are available, the calculation concept should consider the PIOL as thick lens model. For daily use, a nonlinear regression model can properly predict REF and ΔM for the entire range of PIOL steps if a vergence calculation is unavailable.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    背景:这项Monte-Carlo研究的目的是基于大量临床数据集,研究使用厚透镜模型代替薄透镜模型对人工晶状体(IOL)在眼镜平面和眼睛放大倍数产生的屈光度的影响。
    方法:具有薄眼镜矫正的假晶状体模型眼,厚角膜(表面和中心厚度的曲率)和厚IOL(源自薄晶状体IOL的等效屈光力PL,科丁顿因子CL(从-1.0到1.0均匀分布),预设中心厚度LT=0.9mm(A)或光学边缘厚度ET=0.2mm,(B))成立。对包含21108个基于线性高斯光学的白内障人群的生物特征测量的临床数据集进行计算,以使用薄透镜和厚透镜IOL模型得出眼镜屈光度和眼睛放大率。
    结果:基于逐步线性回归方法确定的相关参数得出了预测模型(仅限于线性项,没有相互作用),以提供一种简单的方法来估计眼镜屈光度和眼倍率的变化,其中使用厚镜片IOL代替薄镜片IOL。当将厚透镜IOL的触觉平面放置在薄透镜IOL的平面上时,使用具有(A)或(B)的厚透镜IOL代替具有相同屈光力的薄透镜IOL的眼镜屈光度变化在约±1.5dpt的范围内。相比之下,将IOL视为厚透镜而非薄透镜后的眼倍率变化较小,且无临床意义.
    结论:此Monte-Carlo模拟显示了使用具有预设LT或ET的厚透镜模型IOL对所得球面等效屈光度和眼睛放大倍数的影响。IfIOLmanufacturerswouldprovideallrelevantdataonIOLdesigndataandcompressionindexforallpowerstep,这将有可能进行直接计算的屈光和眼睛放大。
    BACKGROUND: The purpose of this Monte-Carlo study is to investigate the effect of using a thick lens model instead of a thin lens model for the intraocular lens (IOL) on the resulting refraction at the spectacle plane and on the ocular magnification based on a large clinical data set.
    METHODS: A pseudophakic model eye with a thin spectacle correction, a thick cornea (curvatures for both surfaces and central thickness) and a thick IOL (equivalent power PL derived from a thin lens IOL, Coddington factor CL (uniformly distributed from -1.0 to 1.0), either preset central thickness LT = 0.9 mm (A) or optic edge thickness ET = 0.2 mm, (B)) was set up. Calculations were performed on a clinical data set containing 21 108 biometric measurements of a cataractous population based on linear Gaussian optics to derive spectacle refraction and ocular magnification using the thin and thick lens IOL models.
    RESULTS: A prediction model (restricted to linear terms without interactions) was derived based on the relevant parameters identified with a stepwise linear regression approach to provide a simple method for estimating the change in spectacle refraction and ocular magnification where a thick lens IOL is used instead of a thin lens IOL. The change in spectacle refraction using a thick lens IOL with (A) or (B) instead of a thin lens IOL with identical power was within limits of around ±1.5 dpt when the thick lens IOL was placed with its haptic plane at the plane of the thin lens IOL. In contrast, the change in ocular magnification from considering the IOL as a thick lens instead of a thin lens was small and not clinically significant.
    CONCLUSIONS: This Monte-Carlo simulation shows the impact of using a thick lens model IOL with preset LT or ET on the resulting spherical equivalent refraction and ocular magnification. If IOL manufacturers would provide all relevant data on IOL design data and refractive index for all power steps, this would make it possible to perform direct calculations of refraction and ocular magnification.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    UNASSIGNED:研究在基于OCT的血管造影成像期间调整眼放大倍数对结构-功能关系和青光眼检测的影响。
    未经评估:横断面研究。
    UNASSIGNED:共纳入96名健康对照参与者和90名开角型青光眼患者。
    UNASSIGNED:对对照组和患者组的每个患者的一只眼睛进行评估。包含黄斑血管密度(VD)和周围乳头VD的层来自扫描源OCT血管造影成像。使用Humphrey24-2测试测量标准自动视野法的平均灵敏度(MS)。用简单和部分相关系数评估了结构-功能关系。使用接受者工作特性曲线下面积(AUC)进行接受者工作特性分析以评估青光眼的诊断准确性。使用Bennett修改的Littmann公式调整眼睛放大倍数。
    UNASSIGNED:轴向长度与VD之间的关联,结构-功能关系,和青光眼检测有和没有放大校正。
    UNASSIGNED:在未进行放大校正的情况下,黄斑区的浅层与轴向长度没有显着相关(r=0.0011;P=0.99);但是,放大校正后与眼轴长度呈负相关(r=-0.22;P=0.028)。关于周围乳头区域的神经头层,观察到与没有放大校正的轴向长度呈负相关(r=-0.22;P=0.031);然而,这种显著的相关性随着放大校正而消失。黄斑浅层和周围乳头区域的神经头层与未经放大校正的Humphrey24-2MS值显着相关(分别为r=0.22和r=0.32);然而,这些相关性在放大倍数校正后没有改善(分别为r=0.20和r=0.33).浅层青光眼诊断准确性(AUC,0.63)和神经头层(AUC,0.70)无放大校正后没有改善(AUC,分别为0.62和0.69)。
    UNASSIGNED:调整眼睛放大倍数对于准确的VD测量很重要;但是,它可能不会显著影响结构-功能关系和青光眼的检测.
    UNASSIGNED: To investigate the effects of adjusting the ocular magnification during OCT-based angiography imaging on structure-function relationships and glaucoma detection.
    UNASSIGNED: Cross-sectional study.
    UNASSIGNED: A total of 96 healthy control participants and 90 patients with open-angle glaucoma were included.
    UNASSIGNED: One eye of each patient in the control group and the patient group was evaluated. The layers comprising the macula vascular density (VD) and circumpapillary VD were derived from swept-source OCT angiography imaging. The mean sensitivity (MS) of the standard automated perimetry was measured using the Humphrey 24-2 test. Structure-function relationships were evaluated with simple and partial correlation coefficients. A receiver operating characteristic analysis was performed to evaluate the diagnostic accuracy for glaucoma using the area under the receiver operating characteristic curve (AUC). Ocular magnification was adjusted using Littmann\'s formula modified by Bennett.
    UNASSIGNED: The association between the axial length and VD, structure-function relationships, and glaucoma detection with and without magnification correction.
    UNASSIGNED: The superficial layer of the macular region was not significantly correlated to the axial length without magnification correction (r = 0.0011; P = 0.99); however, it was negatively correlated to the axial length with magnification correction (r = -0.22; P = 0.028). Regarding the nerve head layer in the circumpapillary region, a negative correlation to the axial length without magnification correction was observed (r = -0.22; P = 0.031); however, this significant correlation disappeared with magnification correction. The superficial layer of the macula and the nerve head layer of the circumpapillary region were significantly correlated to Humphrey 24-2 MS values without magnification correction (r = 0.22 and r = 0.32, respectively); however, these correlations did not improve after magnification correction (r = 0.20 and r = 0.33, respectively). Glaucoma diagnostic accuracy in the superficial layer (AUC, 0.63) and nerve head layer (AUC, 0.70) without magnification correction did not improve after magnification correction (AUC, 0.62 and 0.69, respectively).
    UNASSIGNED: Adjustment of the ocular magnification is important for accurate VD measurements; however, it may not significantly impact structure-function relationships and glaucoma detection.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    评估儿童眼倍率校正与黄斑脉络膜厚度(ChT)测量值之间的关系,并证明何时需要校正眼睛的放大率。
    包括具有各种屈光状态的6-9岁中国儿童。扫描源光学相干断层扫描用于测量黄斑ChT。采用自行设计的程序来模拟各种模拟轴向长度(AL)下黄斑中ETDRS网格每个扇区的ChT变化。
    在中央凹超过95%的个体中,所有模拟AL的ChT测量值均未受到影响。在下级,上级,和颞侧半凹部分,包括95%个体的AL范围从约22.0mm缩小到27.2mm。在鼻旁凹和下凹部分,上级,和颞侧中央凹部分,可能包括95%个体的AL范围变得更窄,从大约22.8毫米到26.0毫米。在中央凹周围的鼻部观察到最窄的范围,范围从23.3毫米到25.5毫米。远视眼放大的效果比近视眼的效果更显著,上级,和鼻腔中央凹部分。
    在黄斑ChT测量期间,中央凹不需要进行眼镜放大校正。然而,通常应在鼻中央凹区域以及在其余黄斑区域中AL小于22.8mm或大于26.0mm的个体中校正眼镜检查。
    To evaluate the relationship between ocular magnification correction and macular choroidal thickness (ChT) measurements in children, and to demonstrate when ocular magnification correction is necessary.
    Chinese children aged 6-9 years with various refractive statuses were included. Swept-source optical coherence tomography was used to measure macular ChT. A self-designed program was adopted to simulate ChT changes in each sector of the ETDRS grid in the macula under various simulated axial lengths (ALs).
    ChT measurements were not affected for all simulated ALs in over 95% of the individuals in the central fovea. In the inferior, superior, and temporal parafoveal sectors, the extent of AL that may include 95% of the individuals narrowed from approximately 22.0 mm to 27.2 mm. In the nasal parafoveal sector and inferior, superior, and temporal perifoveal sectors, the extent of AL that may include 95% of the individuals became even narrower, from approximately 22.8 mm to 26.0 mm. The narrowest extent was observed in the perifoveal nasal sector, ranging from 23.3 mm to 25.5 mm. The effect of ocular magnification was more significant in hyperopes than in myopes in the inferior parafoveal sector and temporal, superior, and nasal perifoveal sectors.
    During macular ChT measurements, ocular magnification correction is not necessary in the central fovea. However, ocular magnification should be corrected normally in the nasal perifoveal region and in individuals with ALs shorter than 22.8 mm or longer than 26.0 mm in the remaining macular regions.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    背景:在现代白内障手术中,总体眼倍率(OOM)和经向眼倍率(MOM)以及随之而来的图像失真已被广泛忽略。这项研究的目的是研究在散光折射表面的一般情况下的OOM和MOM。
    方法:从一个包含9734名患者白内障手术前双眼生物特征测量(IOLMaster700)的大型数据集,得出HofferQ的当量(PIOLeq)和圆柱功率(PIOLcyl),海吉斯,和直视的Castrop公式。基于假晶状体眼模型,OOM和MOM是使用4×4矩阵代数提取的,用于校正的眼睛(使用PIOLeq/PIOLcyl(场景1)或使用PIOLeq和剩余屈光圆柱的眼镜校正(场景2)或使用PIOLeq保留剩余的未校正的屈光圆柱(模糊图像)(场景3))。在每种情况下,以%计算MOM/OOM的相对图像失真。
    结果:平均而言,HofferQ的PIOLeq/PIOLcyl为20.73±4.50dpt/1.39±1.09dpt,海吉斯20.75±4.23dpt/1.29±1.01dpt,Castrop公式为20.63±4.31dpt/1.26±0.98dpt。场景2的圆柱折射为0.91±0.70dpt,0.89±0.69dpt,和0.89±0.69dpt,分别。OOM/MOM(×1000)分别为16.56±1.20/0.08±0.07、16.56±1.20/0.18±0.14和16.56±1.20/0.08±0.07mm/mrad;HofferQ为16.64±1.16/0.07±0.06、16.64±1.16/0.18±0.14和16.64±1.16/0.07mm/mrad,Haigis为1.72±0.0均值/95%分位数相对图像失真为0.49/1.23%,0.41/1.05%,场景1和场景3为0.40/0.98%,1.09/2.71%,1.07/2.66%,HofferQ的场景2为1.06/2.64%,海吉斯,和Castrop配方。
    结论:假晶状体眼的矩阵表示可以简单直接地预测白内障手术后的假晶状体眼的OOM和MOM。OOM和MOM可用于估计单目图像失真,或眼睛之间整体或子午线放大倍数的差异。
    BACKGROUND: Overall ocular magnification (OOM) and meridional ocular magnification (MOM) with consequent image distortions have been widely ignored in modern cataract surgery. The purpose of this study was to investigate OOM and MOM in a general situation with an astigmatic refracting surface.
    METHODS: From a large dataset containing biometric measurements (IOLMaster 700) of both eyes of 9734 patients prior to cataract surgery, the equivalent (PIOLeq) and cylindric power (PIOLcyl) were derived for the HofferQ, Haigis, and Castrop formulae for emmetropia. Based on the pseudophakic eye model, OOM and MOM were extracted using 4 × 4 matrix algebra for the corrected eye (with PIOLeq/PIOLcyl (scenario 1) or with PIOLeq and spectacle correction of the residual refractive cylinder (scenario 2) or with PIOLeq remaining the residual uncorrected refractive cylinder (blurry image) (scenario 3)). In each case, the relative image distortion of MOM/OOM was calculated in %.
    RESULTS: On average, PIOLeq/PIOLcyl was 20.73 ± 4.50 dpt/1.39 ± 1.09 dpt for HofferQ, 20.75 ± 4.23 dpt/1.29 ± 1.01 dpt for Haigis, and 20.63 ± 4.31 dpt/1.26 ± 0.98 dpt for Castrop formulae. Cylindric refraction for scenario 2 was 0.91 ± 0.70 dpt, 0.89 ± 0.69 dpt, and 0.89 ± 0.69 dpt, respectively. OOM/MOM (× 1000) was 16.56 ± 1.20/0.08 ± 0.07, 16.56 ± 1.20/0.18 ± 0.14, and 16.56 ± 1.20/0.08 ± 0.07 mm/mrad with HofferQ; 16.64 ± 1.16/0.07 ± 0.06, 16.64 ± 1.16/0.18 ± 0.14, and 16.64 ± 1.16/0.07 ± 0.06 mm/mrad with Haigis; and 16.72 ± 1.18/0.07 ± 0.05, 16.72 ± 1.18/0.18 ± 0.14, and 16.72 ± 1.18/0.07 ± 0.05 mm/mrad with Castrop formulae. Mean/95% quantile relative image distortion was 0.49/1.23%, 0.41/1.05%, and 0.40/0.98% for scenarios 1 and 3 and 1.09/2.71%, 1.07/2.66%, and 1.06/2.64% for scenario 2 with HofferQ, Haigis, and Castrop formulae.
    CONCLUSIONS: Matrix representation of the pseudophakic eye allows for a simple and straightforward prediction of OOM and MOM of the pseudophakic eye after cataract surgery. OOM and MOM could be used for estimating monocular image distortions, or differences in overall or meridional magnifications between eyes.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    背景:在现代白内障手术中,白内障手术后的眼部放大和aniseikia已被广泛忽略。这项研究的目的是分析正常白内障人群的眼部放大倍数和个体差异,重点是单视。
    方法:从一个包含9734名患者白内障手术前双眼生物特征测量(IOLMaster700)的大型数据集,将眼睛随机索引为原发性(P)和继发性(S)。HofferQ的人工晶状体屈光力(IOLP)得出,Haigis和Castrop公式用于P的屈光不正和S的屈光不正或近视(-0.5至-2dpt)以模拟单视。除了这些公式之外,还基于伪晶状体眼模型,使用矩阵代数(折射和平移矩阵以及描述整个眼镜矫正或未矫正眼睛的光学特性的系统矩阵)提取眼睛放大率。
    结果:对于P和S的正视,IOLP差异(S-P)显示出0.162/0.156/0.157dpt的标准偏差,眼睛放大倍数差异产生的标准偏差为0.0414/0.0405/0.0408mm/mradHofferQ/Haigis/Castrop设置。模拟单视,近视眼(S)显示出比正视眼系统更小的平均绝对眼镜校正眼放大率(分别为-0.0351/-0.0340/-0.0336,相对放大率约为2%)。如果S眼近视仍未矫正,眼睛放大倍数的降低要小得多(约0.2-0.3%)。
    结论:用于IOLP计算的聚散度公式有时隐含地定义了一个假晶状体眼模型,该模型可直接用于预测白内障手术后的眼倍率。尽管两只眼睛非常相似,眼睛之间的放大倍数并不完全匹配,并且对眼睛放大倍数和aniseikonia的预测可能与避免假晶状体眼的eikonic问题有关。
    BACKGROUND: Ocular magnification and aniseikonia after cataract surgery has been widely ignored in modern cataract surgery. The purpose of this study was to analyse ocular magnification and inter-individual differences in a normal cataract population with a focus on monovision.
    METHODS: From a large dataset containing biometric measurements (IOLMaster 700) of both eyes of 9734 patients prior to cataract surgery, eyes were indexed randomly as primary (P) and secondary (S). Intraocular lens power (IOLP) was derived for the HofferQ, Haigis and Castrop formulae for emmetropia for P and emmetropia or myopia (-0.5 to -2 dpt) for S to simulate monovision. Based on the pseudophakic eye model in addition to these formulae, ocular magnification was extracted using matrix algebra (refraction and translation matrices and a system matrix describing the optical property of the entire spectacle corrected or uncorrected eye).
    RESULTS: With emmetropia for P and S the IOLP differences (S-P) showed a standard deviation of 0.162/0.156/0.157 dpt and ocular magnification differences yielded a standard deviation of 0.0414/0.0405/0.0408 mm/mrad for the HofferQ/Haigis/Castrop setting. Simulating monovision, the myopic eye (S) showed a systematically smaller mean absolute spectacle corrected ocular magnification than the emmetropic eye (-0.0351/-0.0340/-0.0336, respectively, relative magnification around 2%). If myopia in the S eye remains uncorrected, the reduction of ocular magnification is much smaller (around 0.2-0.3%).
    CONCLUSIONS: Vergence formulae for IOLP calculation sometimes implicitly define a pseudophakic eye model which can be directly used to predict ocular magnification after cataract surgery. Despite a strong similarity of both eyes, ocular magnification does not fully match between eyes and the prediction of ocular magnification and aniseikonia might be relevant to avoid eikonic problems in the pseudophakic eye.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: English Abstract
    OBJECTIVE: Aniseikonia as one of the major risk factors for asthenopic problems is mostly overlooked in modern cataract surgery. The purpose of this study was to develop a simple calculation scheme for clinicians to predict the object to image magnification in a pseudophakic eye with biometric data.
    METHODS: The calculation scheme for object to image magnification in the pseudophakic eye is based on a vergence calculation of the lens power with theoretical optical formulae. From the biometric data, which are typically derived from both eyes during lens power calculation, the vergences in front of and behind the 3 or 4 refractive surfaces of the pseudophakic eye model are used to predict the magnification for objects at infinity or objects located at a finite measurement distance (e.g. 5 m).
    RESULTS: With a formula-based lens power calculation a pseudophakic eye model is set up with 3 or 4 refractive surfaces (postoperative spectacle refraction; thick cornea described by anterior surface or thick cornea characterized by anterior and posterior surfaces; intraocular lens). The vergence in front of and behind each refractive surface is derived by means of linear Gaussian optics. The quotient of the product of all vergences in front of the surfaces and the product of all vergences behind the respective surfaces describes the object to image magnification of the eye. A comparison of the object to image magnification of both eyes yields the retinal image size disparity or aniseikonia. This calculation strategy is shown in a step-by-step approach exemplarily for the Haigis and Hoffer‑Q formulae (3 surfaces) and the Castrop formula (4 surfaces).
    CONCLUSIONS: If during planning and lens power calculation biometry is performed for both eyes, ocular magnification of both eyes can be easily derived with this calculation scheme and aniseikonia can be extracted from a comparison of magnification of both eyes. Such a simple prediction should be established as a standard for precataract biometry and lens power calculation for early detection and avoidance of asthenopic complaints after cataract surgery.
    UNASSIGNED: HINTERGRUND UND ZIELSETZUNG: Die Aniseikonie als mögliche Ursache asthenopischer Beschwerden tritt bei der modernen Kataraktchirurgie oft in den Hintergrund. Ziel der vorliegenden Arbeit ist es, dem Kliniker ein einfaches Berechnungsmodell an die Hand zu geben, mit dem der Abbildungsmaßstab des pseudophaken Auges abgeschätzt werden kann.
    UNASSIGNED: Das Berechnungsschema für den Abbildungsmaßstab des pseudophaken Auges bezieht sich auf die formelbasierte (vergenzbasierte) Berechnung der Intraokularlinse mit theoretisch-optischen Formeln. Aus den biometrischen Größen, die in der Regel für beide Augen bei der Linsenberechnung vorliegen, kann aus den Vergenzen vor und hinter den 3 oder 4 refraktiven Grenzflächen im pseudophaken Augenmodell der Abbildungsmaßstab für Objekte im Unendlichen oder in einer endlichen Messdistanz ermittelt werden.
    UNASSIGNED: Bei der formelbasierten Berechnung wird ein pseudophakes Augenmodell mit 3 bzw. 4 refraktiven Grenzflächen (postoperative Brillenrefraktion; dünne Hornhaut, beschrieben durch die Vorderfläche, bzw. dicke Hornhaut, beschrieben durch die Vorder- und Rückfläche; Intraokularlinse) definiert und mit den Methoden der linearen Optik die Vergenz vor und hinter jeder Grenzfläche bestimmt. Der Quotient aus dem Produkt der Vergenzen vor den Grenzflächen und dem Produkt der Vergenzen unmittelbar hinter den Grenzflächen beschreibt direkt den Abbildungsmaßstab des Auges. Aus dem Vergleich des Abbildungsmaßstabs beider Augen kann unmittelbar der retinale Bildgrößenunterschied ermittelt werden. Exemplarisch wird dies anhand der Haigis- und Hoffer-Q-Formel (3 Flächen) und der Castrop-Formel (4 Flächen) gezeigt.
    UNASSIGNED: Wird bei der Planung der Kataraktoperation die Biometrie und Linsenberechnung an beiden Augen durchgeführt, so kann mit einfachen Mitteln der Abbildungsmaßstab bei beiden Augen und aus dem Vergleich beider Augen die Aniseikonie des pseudophaken Patienten ermittelt werden. Eine derartige Abschätzung sollte fester Bestandteil der Linsenberechnung werden, um mögliche asthenopische Beschwerden nach der Kataraktoperation früh zu erkennen.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号