OXA, oxaliplatin

  • 文章类型: Journal Article
    化疗和免疫疗法的结合通过引发免疫原性细胞死亡(ICD)来激发强大的免疫系统,在抑制肿瘤生长和改善免疫抑制肿瘤微环境(ITM)方面显示出巨大的潜力。然而,低劣的药物生物利用度限制了治疗效果。在这里,我们报道了一种通用的生物响应性阿霉素(DOX)基纳米凝胶,可实现肿瘤特异性药物共递送。设计并选择基于DOX的甘露糖纳米凝胶(DMNG)作为示例,以阐明联合化学免疫疗法的机制。不出所料,DMNG表现出显著的胶束稳定性,选择性药物释放和延长生存时间,受益于增强肿瘤通透性和延长血液循环。我们发现由DMNG递送的DOX可以通过促进ICD来诱导强大的抗肿瘤免疫应答。同时,从DMNGs释放的甘露糖被证明在体外和体内对乳腺癌具有强大的协同治疗作用,通过破坏糖酵解和三羧酸循环中的葡萄糖代谢。总的来说,基于DOX的纳米凝胶对肿瘤微环境的调节有望成为一种有效的候选策略,以克服基于ICD的免疫治疗的当前局限性。为免疫调节纳米药物的开发提供了范例。
    The combination of chemotherapy and immunotherapy motivates a potent immune system by triggering immunogenic cell death (ICD), showing great potential in inhibiting tumor growth and improving the immunosuppressive tumor microenvironment (ITM). However, the therapeutic effectiveness has been restricted by inferior drug bioavailability. Herein, we reported a universal bioresponsive doxorubicin (DOX)-based nanogel to achieve tumor-specific co-delivery of drugs. DOX-based mannose nanogels (DM NGs) was designed and choosed as an example to elucidate the mechanism of combined chemo-immunotherapy. As expected, the DM NGs exhibited prominent micellar stability, selective drug release and prolonged survival time, benefited from the enhanced tumor permeability and prolonged blood circulation. We discovered that the DOX delivered by DM NGs could induce powerful anti-tumor immune response facilitated by promoting ICD. Meanwhile, the released mannose from DM NGs was proved as a powerful and synergetic treatment for breast cancer in vitro and in vivo, via damaging the glucose metabolism in glycolysis and the tricarboxylic acid cycle. Overall, the regulation of tumor microenvironment with DOX-based nanogel is expected to be an effectual candidate strategy to overcome the current limitations of ICD-based immunotherapy, offering a paradigm for the exploitation of immunomodulatory nanomedicines.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    最优选的药物给药方式是通过口服途径,但生理障碍如pH,酶降解等.限制此路由的绝对使用。纳米技术在纳米医学领域有着广泛的应用,特别是在药物输送系统中。独特的特性,特别是小尺寸和高表面积(可以根据需要进行修改),这些纳米颗粒所表现出的这些结构更适合于药物递送的目的。各种纳米结构,像脂质体一样,树枝状聚合物,介孔二氧化硅纳米颗粒,等。是为上述目的而设计的。这些纳米结构相对于传统的药物给药具有若干优点。除了克服许多潜在治疗分子的药代动力学和药效学限制外,它们也可能用于先进的药物递送目的,如靶向药物递送,控释,增强的渗透性和保留(EPR)效果。在这次审查中,我们试图描述有关各种战略性设计的纳米结构的最新知识,以克服与口服药物相关的问题。
    The most preferable mode of drugs administration is via the oral route but physiological barriers such as pH, enzymatic degradation etc. limit the absolute use of this route. Herein lies the importance of nanotechnology having a wide range of applications in the field of nano-medicine, particularly in drug delivery systems. The exclusive properties particularly small size and high surface area (which can be modified as required), exhibited by these nanoparticlesrender these structures more suitable for the purpose of drug delivery. Various nanostructures, like liposomes, dendrimers, mesoporous silica nanoparticles, etc. have been designed for the said purpose. These nanostructures have several advantages over traditional administration of medicine. Apart from overcoming the pharmacokinetic and pharmacodynamics limitations of many potential therapeutic molecules, they may also be useful for advanced drug delivery purposes like targeted drug delivery, controlled release, enhanced permeability and retention (EPR) effect. In this review, we attempt to describe an up-to-date knowledge on various strategically devised nanostructures to overcome the problems related to oral drug administration.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

公众号