Nucleoside-Diphosphate Kinase

核苷 - 二磷酸激酶
  • 文章类型: Journal Article
    线粒体基因表达是代谢功能必不可少的分隔过程。线粒体DNA(mtDNA)的复制和转录发生在类核中,而线粒体RNA(mtRNA)和线粒体体组装的后续加工和成熟被定位到线粒体RNA颗粒。环状mtDNA的双向转录可以导致多顺反子转录物的杂交和免疫原性线粒体双链RNA(mt-dsRNA)的形成。然而,调节mt-dsRNA定位和稳态的机制在很大程度上是未知的。使用超分辨率显微镜,我们显示mt-dsRNA与线粒体RNA颗粒的RNA核心和相关蛋白重叠,但不与核苷酸重叠。Mt-dsRNA病灶在刺激细胞增殖时积累,其丰度取决于核苷二磷酸激酶的线粒体核糖核苷酸供应,NME6.因此,mt-dsRNA病灶在培养的癌细胞和人类肿瘤活检的恶性细胞中大量存在。我们的结果在细胞增殖和线粒体核酸稳态之间建立了新的联系。
    Mitochondrial gene expression is a compartmentalised process essential for metabolic function. The replication and transcription of mitochondrial DNA (mtDNA) take place at nucleoids, whereas the subsequent processing and maturation of mitochondrial RNA (mtRNA) and mitoribosome assembly are localised to mitochondrial RNA granules. The bidirectional transcription of circular mtDNA can lead to the hybridisation of polycistronic transcripts and the formation of immunogenic mitochondrial double-stranded RNA (mt-dsRNA). However, the mechanisms that regulate mt-dsRNA localisation and homeostasis are largely unknown. With super-resolution microscopy, we show that mt-dsRNA overlaps with the RNA core and associated proteins of mitochondrial RNA granules but not nucleoids. Mt-dsRNA foci accumulate upon the stimulation of cell proliferation and their abundance depends on mitochondrial ribonucleotide supply by the nucleoside diphosphate kinase, NME6. Consequently, mt-dsRNA foci are profuse in cultured cancer cells and malignant cells of human tumour biopsies. Our results establish a new link between cell proliferation and mitochondrial nucleic acid homeostasis.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    Bemnifosbuvir(AT-527)和AT-752是目前针对几种RNA病毒的临床试验中的鸟苷类似物。这里,我们表明,这些药物需要最少的5种细胞酶来激活它们常见的5'-三磷酸AT-9010,具有强制性的反应顺序。AT-9010选择性地抑制必需的病毒酶,考虑抗病毒效力。原子分辨率的功能和结构数据破译了与其代谢激活相容的N6-嘌呤脱氨基作用。人组氨酸三联体核苷酸结合蛋白1,腺苷脱氨酶样蛋白1,鸟苷酸激酶1和核苷二磷酸激酶的晶体结构,分辨率为2.09、2.44、1.76和1.9,分别,AT-9010的同源前体阐明了从口服可用的bemnifosbuvir到AT-9010的激活途径,指向沿激活途径的关键药物-蛋白质接触。我们的工作提供了一个框架来整合抗病毒核苷酸类似物的设计,沿着5'-三磷酸盐装配线面临与活化酶相关的要求和限制。
    Bemnifosbuvir (AT-527) and AT-752 are guanosine analogues currently in clinical trials against several RNA viruses. Here, we show that these drugs require a minimal set of 5 cellular enzymes for activation to their common 5\'-triphosphate AT-9010, with an obligate order of reactions. AT-9010 selectively inhibits essential viral enzymes, accounting for antiviral potency. Functional and structural data at atomic resolution decipher N6-purine deamination compatible with its metabolic activation. Crystal structures of human histidine triad nucleotide binding protein 1, adenosine deaminase-like protein 1, guanylate kinase 1, and nucleoside diphosphate kinase at 2.09, 2.44, 1.76, and 1.9 Å resolution, respectively, with cognate precursors of AT-9010 illuminate the activation pathway from the orally available bemnifosbuvir to AT-9010, pointing to key drug-protein contacts along the activation pathway. Our work provides a framework to integrate the design of antiviral nucleotide analogues, confronting requirements and constraints associated with activation enzymes along the 5\'-triphosphate assembly line.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    核苷二磷酸(NDP)激酶1和2(NME1/2)是已知其NDP激酶活性的充分表征的酶。最近,这些酶已通过独立研究显示结合辅酶A(CoA)或酰基-CoA。这些发现表明NME1/2在调节CoA/酰基-CoA依赖性代谢途径中的作用。与细胞NTP/NDP比率密切相关。因此,已经描述了通过CoA/酰基-CoA结合调节NME1/2功能,此外,NME1/2已被证明可以控制消耗乙酰辅酶A的细胞途径,如组蛋白乙酰化和脂肪酸合成。NME1/2控制的组蛋白乙酰化反过来介导对代谢变化的重要转录反应,例如在高脂肪饮食(HFD)之后诱导的那些。这篇综述讨论了CoA/酰基-CoA依赖性NME1/2活性,并建议将这些酶视为CoA/短链酰基-CoA的第一个鉴定载体。
    Nucleoside diphosphate (NDP) kinases 1 and 2 (NME1/2) are well-characterized enzymes known for their NDP kinase activity. Recently, these enzymes have been shown by independent studies to bind coenzyme A (CoA) or acyl-CoA. These findings suggest a hitherto unknown role for NME1/2 in the regulation of CoA/acyl-CoA-dependent metabolic pathways, in tight correlation with the cellular NTP/NDP ratio. Accordingly, the regulation of NME1/2 functions by CoA/acyl-CoA binding has been described, and additionally, NME1/2 have been shown to control the cellular pathways consuming acetyl-CoA, such as histone acetylation and fatty acid synthesis. NME1/2-controlled histone acetylation in turn mediates an important transcriptional response to metabolic changes, such as those induced following a high-fat diet (HFD). This review discusses the CoA/acyl-CoA-dependent NME1/2 activities and proposes that these enzymes be considered as the first identified carriers of CoA/short-chain acyl-CoAs.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    G蛋白信号传导(RGS)蛋白的调节剂表现出GTP酶加速蛋白活性以控制G蛋白功能。在稻瘟病真菌稻瘟病中,有一个家族至少八个RGS和RGS样蛋白(MoRgs1至MoRgs8),每个人在成长中都表现出不同或共同的功能,附睾形成,和致病性。最近出现的MoRgs3是在附着层形成过程中感知细胞内氧化的关键调节因子之一。为了探索MoRgs3的这种独特调节机制,我们鉴定了与MoRgs3相互作用的核苷二磷酸激酶MoNdk1。MoNdk1在诱导的细胞内活性氧水平下磷酸化MoRgs3,和MoRgs3磷酸化是形成和致病性所必需的。此外,我们表明,MoRgs3磷酸化决定了它与MoCrn1的相互作用,MoCrn1是一种类似于冠状肌动蛋白结合蛋白的同源物,它调节MoRgs3的内化。最后,我们提供的证据表明MoRgs3在MoMagA介导的cAMP信号传导中起作用,以调节正常的贴壁诱导。通过揭示一种新的信号感知机制,我们的研究强调了稻瘟病菌在附睾功能和致病性过程中调节的复杂性。
    目的:我们报道了MoRgs3在细胞内的氧化环境中在贴壁形成阶段发生磷酸化。我们发现这种磷酸化是由核苷二磷酸激酶MoNdk1进行的。此外,这种磷酸化导致MoRgs3和MoCrn1之间更高的结合亲和力,MoCrn1是一种冠状肌动蛋白结合蛋白,与稻瘟病的其他几种RGS蛋白的内吞转运有关.我们进一步发现,MoRgs3的内化对于其GTP酶激活蛋白对Gα亚基MoMagA的功能是必不可少的。重要的是,我们表征了这些细胞调节事件如何与cAMP信号调节的结合菌的形成和致病性一致。我们的研究揭示了模型病原真菌中一种新颖的细胞内活性氧信号转导机制,具有重要的基础和应用意义。
    Regulator of G-protein signaling (RGS) proteins exhibit GTPase-accelerating protein activities to govern G-protein function. In the rice blast fungus Magnaporthe oryzae, there is a family of at least eight RGS and RGS-like proteins (MoRgs1 to MoRgs8), each exhibiting distinct or shared functions in the growth, appressorium formation, and pathogenicity. MoRgs3 recently emerged as one of the crucial regulators that senses intracellular oxidation during appressorium formation. To explore this unique regulatory mechanism of MoRgs3, we identified the nucleoside diphosphate kinase MoNdk1 that interacts with MoRgs3. MoNdk1 phosphorylates MoRgs3 under induced intracellular reactive oxygen species levels, and MoRgs3 phosphorylation is required for appressorium formation and pathogenicity. In addition, we showed that MoRgs3 phosphorylation determines its interaction with MoCrn1, a coronin-like actin-binding protein homolog, which regulates MoRgs3 internalization. Finally, we provided evidence demonstrating that MoRgs3 functions in MoMagA-mediated cAMP signaling to regulate normal appressorium induction. By revealing a novel signal perception mechanism, our studies highlighted the complexity of regulation during the appressorium function and pathogenicity of the blast fungus.
    OBJECTIVE: We report that MoRgs3 becomes phosphorylated in an oxidative intracellular environment during the appressorium formation stage. We found that this phosphorylation is carried out by MoNdk1, a nucleoside diphosphate kinase. In addition, this phosphorylation leads to a higher binding affinity between MoRgs3 and MoCrn1, a coronin-like actin-binding protein that was implicated in the endocytic transport of several other RGS proteins of Magnaporthe oryzae. We further found that the internalization of MoRgs3 is indispensable for its GTPase-activating protein function toward the Gα subunit MoMagA. Importantly, we characterized how such cellular regulatory events coincide with cAMP signaling-regulated appressorium formation and pathogenicity in the blast fungus. Our studies uncovered a novel intracellular reactive oxygen species signal-transducing mechanism in a model pathogenic fungus with important basic and applied implications.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    核苷二磷酸激酶(NDPKs)是核苷酸代谢酶,在不同物种中发挥不同的生理功能。然而,NDPK在植物病原体和霉菌毒素生产中的作用尚不清楚。在这项研究中,我们表明,镰刀菌FgNdpk对营养生长很重要,分生孢子,性发育,和致病性。此外,FgNdpk是脱氧雪腐镰刀菌烯醇(DON)生产所必需的;FgNDPK的缺失下调了DON生物合成基因的表达,并破坏了FgTri4-GFP标记的毒物的形成,而FgNDPK的过表达显着增加DON的产生。有趣的是,FgNdpk与DON生物合成蛋白FgTri1和FgTri4在毒物组中共定位,和共免疫沉淀(Co-IP)测定表明,FgNdpk在体内与FgTri1和FgTri4结合并调节其定位和表达,分别。一起来看,这些数据表明FgNdpk对营养生长很重要,分生孢子,和致病性,并作为一个关键的蛋白质,调节毒物的形成和DON的生物合成。
    Nucleoside diphosphate kinases (NDPKs) are nucleotide metabolism enzymes that play different physiological functions in different species. However, the roles of NDPK in phytopathogen and mycotoxin production are not well understood. In this study, we showed that Fusarium graminearum FgNdpk is important for vegetative growth, conidiation, sexual development, and pathogenicity. Furthermore, FgNdpk is required for deoxynivalenol (DON) production; deletion of FgNDPK downregulates the expression of DON biosynthesis genes and disrupts the formation of FgTri4-GFP-labeled toxisomes, while overexpression of FgNDPK significantly increases DON production. Interestingly, FgNdpk colocalizes with the DON biosynthesis proteins FgTri1 and FgTri4 in the toxisome, and coimmunoprecipitation (Co-IP) assays show that FgNdpk associates with FgTri1 and FgTri4 in vivo and regulates their localizations and expressions, respectively. Taken together, these data demonstrate that FgNdpk is important for vegetative growth, conidiation, and pathogenicity and acts as a key protein that regulates toxisome formation and DON biosynthesis in F. graminearum.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    尿路致病性大肠杆菌(UPEC)是尿路感染(UTI)的最常见病原体。UPEC通过梭形囊泡侵入膀胱上皮细胞(BECs),逃入细胞质,并建立生物膜样细胞内细菌群落(IBC)。核苷-二磷酸激酶(NDK)由病原菌分泌以增强毒力。然而,NDK是否参与UPEC发病机制尚不清楚.这里,我们发现,由于UPEC形成IBC的能力受损,ndk的缺乏会损害UPECCFT073在小鼠膀胱和肾脏中的定植。此外,我们证明NDK通过消耗细胞外ATP抑制caspase-1依赖性的焦亡,防止浅表BEC脱落,并促进IBC的形成。UPEC利用活性氧(ROS)传感器OxyR间接激活调节器集成宿主因子,然后直接激活ndk表达以响应细胞内ROS。这里,我们揭示了UPEC用于抑制浅层BEC脱落的信号转导途径,从而促进急性UTI。
    Uropathogenic Escherichia coli (UPEC) is the most common causative agent of urinary tract infection (UTI). UPEC invades bladder epithelial cells (BECs) via fusiform vesicles, escapes into the cytosol, and establishes biofilm-like intracellular bacterial communities (IBCs). Nucleoside-diphosphate kinase (NDK) is secreted by pathogenic bacteria to enhance virulence. However, whether NDK is involved in UPEC pathogenesis remains unclear. Here, we find that the lack of ndk impairs the colonization of UPEC CFT073 in mouse bladders and kidneys owing to the impaired ability of UPEC to form IBCs. Furthermore, we demonstrate that NDK inhibits caspase-1-dependent pyroptosis by consuming extracellular ATP, preventing superficial BEC exfoliation, and promoting IBC formation. UPEC utilizes the reactive oxygen species (ROS) sensor OxyR to indirectly activate the regulator integration host factor, which then directly activates ndk expression in response to intracellular ROS. Here, we reveal a signaling transduction pathway that UPEC employs to inhibit superficial BEC exfoliation, thus facilitating acute UTI.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    核苷二磷酸激酶(NDK)在所有生物体的许多细胞过程中起着重要作用。在这项研究中,我们在功能上表征了镰刀菌中的核苷二磷酸激酶(FgNdk1),镰刀菌枯萎病(FHB)的病原体。FgNdk1通过与琥珀酸脱氢酶(FgSdhA,FgSdhC1和FgSdhC2)。FgNdk1的缺失不仅导致线粒体形态异常,ATP含量降低,真菌发育缺陷,和毒物形成的损害,但也导致DON生物合成酶的表达水平被抑制,减少DON的生物合成,致病性也下降了。此外,FgNdk1的缺失导致FgSdhC1和FgdhC2的转录水平增加,在pydiflumetofen的存在下,与对SDHI杀菌剂的敏感性降低有关。总的来说,本研究确定了FgNdk1在禾谷镰刀菌致病性和SDHI杀菌剂敏感性中的新调控机制。
    Nucleoside diphosphate kinase (NDK) plays an important role in many cellular processes in all organisms. In this study, we functionally characterized a nucleoside diphosphate kinase (FgNdk1) in Fusarium graminearum, a causal agent of Fusarium head blight (FHB). FgNdk1 was involved in the generation of energy in the electron-transfer chain by interacting with succinate dehydrogenase (FgSdhA, FgSdhC1, and FgSdhC2). Deletion of FgNdk1 not only resulted in abnormal mitochondrial morphology, decreased ATP content, defective fungal development, and impairment in the formation of the toxisome but also led to the suppressed expression level of DON biosynthesis enzymes, decreased DON biosynthesis, and declined pathogenicity as well. Furthermore, deletion of FgNdk1 caused increasing transcriptional levels of FgSdhC1 and FgdhC2, in the presence of pydiflumetofen, related to the decreased sensitivity to SDHI fungicides. Overall, this study identified a new regulatory mechanism of FgNdk1 in the pathogenicity and SDHI fungicide sensitivity of Fusarium graminearum.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    氨基甲酸酯翻译后修饰(PTM),由解离的赖氨酸ε-氨基对二氧化碳的亲核攻击形成,被提议作为感测这种生物学上重要的生物活性气体的广泛机制。这里,我们证明了拟南芥核苷二磷酸激酶(AtNDK1)K9上氨基甲酸酯PTM的发现和体外表征。我们证明了K9改变的侧链反应性对AtNDK1结构和催化功能是有害的,但是二氧化碳不会影响催化作用。我们表明,核苷酸底物从AtNDK1中去除CO2,并且氨基甲酸酯PTM在我们实验的检测范围内是无功能的。AtNDK1K9PTM是无官能氨基甲酸酯的第一个证明。鉴于这一发现,我们推测,非功能性是许多新发现的氨基甲酸酯PTM的可能特征。
    The carbamate post-translational modification (PTM), formed by the nucleophilic attack of carbon dioxide by a dissociated lysine epsilon-amino group, is proposed as a widespread mechanism for sensing this biologically important bioactive gas. Here, we demonstrate the discovery and in vitro characterization of a carbamate PTM on K9 of Arabidopsis nucleoside diphosphate kinase (AtNDK1). We demonstrate that altered side chain reactivity at K9 is deleterious for AtNDK1 structure and catalytic function, but that CO2 does not impact catalysis. We show that nucleotide substrate removes CO2 from AtNDK1, and the carbamate PTM is functionless within the detection limits of our experiments. The AtNDK1 K9 PTM is the first demonstration of a functionless carbamate. In light of this finding, we speculate that non-functionality is a possible feature of the many newly identified carbamate PTMs.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    我们在这里描述了PRUNE1与肿瘤转移抑制剂NME1和NME2的复合物形成的分子基础,NME1和NME2是核苷二磷酸激酶(NDPK)酶家族的两种同工型,以及这种复合物如何调节免疫系统和能量代谢的信号,从而塑造肿瘤微环境(TME)。按照建议,破坏NME1/2和PRUNE1之间的相互作用,具有成为治疗癌症和抑制转移扩散的极好治疗靶标的潜力。此外,我们假设其他I类NME蛋白的相互作用和调节,NME3和NME4蛋白,使用PRUNE1并讨论潜在的功能。I类NME1-4蛋白是平衡核苷酸二磷酸和三磷酸的细胞内库所需的NTP/NDP转磷酸酶。它们通过与多种其他蛋白质相互作用来调节不同的细胞功能,在癌症和转移过程中,它们可以根据细胞环境发挥原癌基因和抗癌基因的特性。在这次审查中,因此,我们还讨论了第1类NME和PRUNE1分子结构的一般方面,以及它们的翻译后修饰和亚细胞定位。关于PRUNE1以及NME蛋白对信号传导级联的贡献的当前知识被总结为特别关注癌症和转移。
    We describe here the molecular basis of the complex formation of PRUNE1 with the tumor metastasis suppressors NME1 and NME2, two isoforms appertaining to the nucleoside diphosphate kinase (NDPK) enzyme family, and how this complex regulates signaling the immune system and energy metabolism, thereby shaping the tumor microenvironment (TME). Disrupting the interaction between NME1/2 and PRUNE1, as suggested, holds the potential to be an excellent therapeutic target for the treatment of cancer and the inhibition of metastasis dissemination. Furthermore, we postulate an interaction and regulation of the other Class I NME proteins, NME3 and NME4 proteins, with PRUNE1 and discuss potential functions. Class I NME1-4 proteins are NTP/NDP transphosphorylases required for balancing the intracellular pools of nucleotide diphosphates and triphosphates. They regulate different cellular functions by interacting with a large variety of other proteins, and in cancer and metastasis processes, they can exert pro- and anti-oncogenic properties depending on the cellular context. In this review, we therefore additionally discuss general aspects of class1 NME and PRUNE1 molecular structures as well as their posttranslational modifications and subcellular localization. The current knowledge on the contributions of PRUNE1 as well as NME proteins to signaling cascades is summarized with a special regard to cancer and metastasis.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    线粒体氧化磷酸化(OXPHOS)复合物由核和线粒体DNA编码的蛋白质组装而成。这些双源酶对需要跨细胞器协调基因表达的细胞提出了复杂的基因调控挑战。为了鉴定参与双源蛋白质复合物合成的基因,我们进行了基于荧光激活细胞分选的全基因组筛选,分析了复合物IV线粒体和核编码亚基水平不平衡的突变细胞.我们确定了参与OXPHOS生物发生的基因,包括两个未表征的基因:PREPL和NME6。我们发现,PREPL通过作用于线粒体脂质代谢和蛋白质合成的交叉点,特别影响复合物IV的生物发生,而NME6,一种未表征的核苷二磷酸激酶,通过依赖其NDPK域的多种机制控制OXPHOS的生物发生。首先,NME6与RCC1L形成复合物,它们共同执行核苷二磷酸激酶活性,以维持线粒体RNA丰度所必需的局部线粒体嘧啶三磷酸水平。其次,NME6调节线粒体调控复合物的活性,改变线粒体体组装和线粒体RNA假尿苷化。一起来看,我们认为NME6是线粒体代谢产物与线粒体基因表达之间的纽带.
    Mitochondrial oxidative phosphorylation (OXPHOS) complexes are assembled from proteins encoded by both nuclear and mitochondrial DNA. These dual-origin enzymes pose a complex gene regulatory challenge for cells requiring coordinated gene expression across organelles. To identify genes involved in dual-origin protein complex synthesis, we performed fluorescence-activated cell-sorting-based genome-wide screens analysing mutant cells with unbalanced levels of mitochondrial- and nuclear-encoded subunits of Complex IV. We identified genes involved in OXPHOS biogenesis, including two uncharacterized genes: PREPL and NME6. We found that PREPL specifically impacts Complex IV biogenesis by acting at the intersection of mitochondrial lipid metabolism and protein synthesis, whereas NME6, an uncharacterized nucleoside diphosphate kinase, controls OXPHOS biogenesis through multiple mechanisms reliant on its NDPK domain. Firstly, NME6 forms a complex with RCC1L, which together perform nucleoside diphosphate kinase activity to maintain local mitochondrial pyrimidine triphosphate levels essential for mitochondrial RNA abundance. Secondly, NME6 modulates the activity of mitoribosome regulatory complexes, altering mitoribosome assembly and mitochondrial RNA pseudouridylation. Taken together, we propose that NME6 acts as a link between compartmentalized mitochondrial metabolites and mitochondrial gene expression.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号