Nuclear Localization Signals

核定位信号
  • 文章类型: Journal Article
    白细胞介素-1α是一种双重功能细胞因子,可能通过获得与白细胞介素-1α前结构域中高度保守区域相关的其他生物学作用,在哺乳动物中与白细胞介素-1β分离。包括核定位序列和组蛋白乙酰转移酶结合域。为什么进化改变了白细胞介素-1α的亚细胞定位和蛋白质相互作用组,以及如何塑造白细胞介素-1α的细胞内作用,是未知的。在这里,我们表明,TurboID与前白介素-1α的邻近标记表明前白介素-1α的核作用,涉及与组蛋白乙酰转移酶的相互作用,包括EP300。我们还鉴定并验证了多种哺乳动物物种的前白介素-1α核定位序列中的失活突变,包括齿鲸,蓖麻和有袋动物。然而,组蛋白乙酰转移酶结合域在那些丢失了前白细胞介素-1α核定位的物种中是保守的。一起,这些数据表明组蛋白乙酰转移酶结合和核定位同时发生,虽然有些物种失去了白细胞介素-1α前体的核定位序列,保持了组蛋白乙酰转移酶的结合能力。核定位序列在不同的进化时间从几个不同的物种中丢失,表明趋同进化,核定位序列的丢失赋予了一些重要的生物学结果。
    Interleukin-1α is a suggested dual-function cytokine that diverged from interleukin-1β in mammals potentially by acquiring additional biological roles that relate to highly conserved regions in the pro-domain of interleukin-1α, including a nuclear localisation sequence and histone acetyltransferase-binding domains. Why evolution modified pro-interleukin-1α\'s subcellular location and protein interactome, and how this shaped interleukin-1α\'s intracellular role, is unknown. Here we show that TurboID proximity labelling with pro-interleukin-1α suggests a nuclear role for pro-interleukin-1α that involves interaction with histone acetyltransferases, including EP300. We also identify and validate inactivating mutations in the pro-interleukin-1α nuclear localisation sequence of multiple mammalian species, including toothed whales, castorimorpha and marsupials. However, histone acetyltransferase-binding domains are conserved in those species that have lost pro-interleukin-1α nuclear localisation. Together, these data suggest that histone acetyltransferase binding and nuclear localisation occurred together, and that while some species lost the nuclear localisation sequence in their pro-interleukin-1α, histone acetyltransferase binding ability was maintained. The nuclear localisation sequence was lost from several distinct species at different evolutionary times, suggesting convergent evolution, and that the loss of the nuclear localisation sequence confers some important biological outcome.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    高通量体积荧光显微镜管道可以在单细胞的基础水平上在空间上整合全脑结构和功能。然而,用于区分单个细胞的常规荧光蛋白(FP)修饰具有有限的功效或对细胞健康有害。这里,我们介绍了一种合成的、无害的核定位信号(NLS)标签策略,称为“富含精氨酸的NLS”(ArgiNLS),通过聚精氨酸机制将FP定位限制在细胞核中,从而优化了单细胞的遗传标记和下游图像分割。单个N端ArgiNLS标签在光谱分离的FP变体中一致地提供模块化核限制。ArgiNLS在体内的表现在主要皮质细胞类别中以及对局部和全身全脑AAV施用的反应中显示出功能保守性。至关重要的是,ArgiNLS提供的高信噪比增强了单个细胞的机器学习自动分割,这是由于快速的分类器训练和在2D大脑切片或3D体积全脑图像数据集内的标记细胞检测的富集。来自染色扩增和天然信号。这种遗传策略提供了一个简单而灵活的基础,以精确的图像分割遗传标记的单细胞的规模和配对的行为程序。
    High-throughput volumetric fluorescent microscopy pipelines can spatially integrate whole-brain structure and function at the foundational level of single cells. However, conventional fluorescent protein (FP) modifications used to discriminate single cells possess limited efficacy or are detrimental to cellular health. Here, we introduce a synthetic and nondeleterious nuclear localization signal (NLS) tag strategy, called \"Arginine-rich NLS\" (ArgiNLS), that optimizes genetic labeling and downstream image segmentation of single cells by restricting FP localization near-exclusively in the nucleus through a poly-arginine mechanism. A single N-terminal ArgiNLS tag provides modular nuclear restriction consistently across spectrally separate FP variants. ArgiNLS performance in vivo displays functional conservation across major cortical cell classes and in response to both local and systemic brain-wide AAV administration. Crucially, the high signal-to-noise ratio afforded by ArgiNLS enhances machine learning-automated segmentation of single cells due to rapid classifier training and enrichment of labeled cell detection within 2D brain sections or 3D volumetric whole-brain image datasets, derived from both staining-amplified and native signal. This genetic strategy provides a simple and flexible basis for precise image segmentation of genetically labeled single cells at scale and paired with behavioral procedures.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    谷氨酰-氨甲酰-tRNA合成酶(EPRS1)是一种双功能氨酰基-tRNA合成酶(aaRS),对于解码遗传密码至关重要。EPRS1驻留,与其他七个aaRS和三个非催化蛋白,在细胞质多tRNA合成酶复合物(MSC)中。多个MSC驻留aaRS,包括EPRS1,表现出从MSC的刺激依赖性释放,以执行与其在蛋白质合成中的主要功能不同的非规范活动。这里,我们显示EPRS1存在于组成型低磷酸酶和张力蛋白同源物(PTEN)表达的乳腺癌细胞的细胞质和细胞核中。EPRS1主要是表达PTEN的细胞,但是对PTEN的化学或遗传抑制作用,或其靶标的化学或应激介导的激活,AKT,诱导EPRS1核定位。同样,在浸润性导管癌中观察到EPRS1的优先核定位,也是P-Ser473-AKT。EPRS1核转运需要连接催化谷氨酰-tRNA合成酶和脯氨酸酰-tRNA合成酶结构域的接头区域内的核定位信号(NLS)。核EPRS1与聚(ADP-核糖)聚合酶1(PARP1)相互作用,一种DNA损伤传感器,可指导蛋白质的聚(ADP-核糖基)化(PARylation)。EPRS1是PARP1活性的关键调节因子,如EPRS1敲低细胞中ADP-核糖基化显著降低所示。此外,EPRS1和PARP1敲低可比较地改变多个肿瘤相关基因的表达,抑制DNA损伤修复,降低肿瘤细胞存活率,并减少乳腺癌细胞形成的肿瘤球。EPRS1介导的PARP1活性调节提供了乳腺癌细胞中PTEN缺失之间的机制联系,PARP1激活,细胞存活和肿瘤生长。靶向EPRS1的非规范活性,而不抑制规范的tRNA连接酶活性,提供了一种潜在补充现有PARP1抑制剂的治疗方法。
    Glutamyl-prolyl-tRNA synthetase (EPRS1) is a bifunctional aminoacyl-tRNA-synthetase (aaRS) essential for decoding the genetic code. EPRS1 resides, with seven other aaRSs and three noncatalytic proteins, in the cytoplasmic multi-tRNA synthetase complex (MSC). Multiple MSC-resident aaRSs, including EPRS1, exhibit stimulus-dependent release from the MSC to perform noncanonical activities distinct from their primary function in protein synthesis. Here, we show EPRS1 is present in both cytoplasm and nucleus of breast cancer cells with constitutively low phosphatase and tensin homolog (PTEN) expression. EPRS1 is primarily cytosolic in PTEN-expressing cells, but chemical or genetic inhibition of PTEN, or chemical or stress-mediated activation of its target, AKT, induces EPRS1 nuclear localization. Likewise, preferential nuclear localization of EPRS1 was observed in invasive ductal carcinoma that were also P-Ser473-AKT+. EPRS1 nuclear transport requires a nuclear localization signal (NLS) within the linker region that joins the catalytic glutamyl-tRNA synthetase and prolyl-tRNA synthetase domains. Nuclear EPRS1 interacts with poly(ADP-ribose) polymerase 1 (PARP1), a DNA-damage sensor that directs poly(ADP-ribosyl)ation (PARylation) of proteins. EPRS1 is a critical regulator of PARP1 activity as shown by markedly reduced ADP-ribosylation in EPRS1 knockdown cells. Moreover, EPRS1 and PARP1 knockdown comparably alter the expression of multiple tumor-related genes, inhibit DNA-damage repair, reduce tumor cell survival, and diminish tumor sphere formation by breast cancer cells. EPRS1-mediated regulation of PARP1 activity provides a mechanistic link between PTEN loss in breast cancer cells, PARP1 activation, and cell survival and tumor growth. Targeting the noncanonical activity of EPRS1, without inhibiting canonical tRNA ligase activity, provides a therapeutic approach potentially supplementing existing PARP1 inhibitors.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    背景:哺乳动物展示是用于治疗性抗体开发的吸引人的技术。尽管哺乳动物展示的优势,例如具有哺乳动物糖基化的全长IgG展示及其选择具有良好生物物理特性的抗体的固有能力,有限的图书馆规模和大量的文化仍然是挑战。Bxb1丝氨酸整合酶通常用于将抗体基因稳定的基因组整合到哺乳动物细胞中,但是目前缺乏展示大型哺乳动物展示库所需的效率。为了提高Bxb1整合酶介导的稳定整合效率,我们的研究调查了可能影响Bxb1整合酶核定位的因素.
    方法:为了提高Bxb1丝氨酸整合酶介导的整合效率,我们将各种核定位信号(NLS)融合到整合酶的N和C末端。同时,我们共表达了与核转运相关的多种蛋白质,以评估它们对编码绿色荧光蛋白(GFP)的DNA和抗体展示盒稳定整合效率的影响,这些蛋白质将整合到中国仓鼠卵巢(CHO)细胞基因组中,该细胞含有Bxb1整合酶介导的整合的着陆垫.
    结果:来自非洲爪狼的核纤溶酶NLS,当与Bxb1整合酶的C端融合时,在经过测试的NLS融合中,稳定集成效率得到了最高的提高,与缺乏NLS融合的Bxb1整合酶相比,表现出超过6倍的改善。随后将额外的NLS融合物添加到Bxb1整合酶中,显示出稳定的整合效率增加了131%,其中包含了两个拷贝的C末端核质蛋白NLS融合物。通过共表达RanGTP酶激活蛋白(RanGAP)实现了进一步的改善。最后,为了验证这些发现对更复杂蛋白质的适用性,使用Bxb1整合酶与两个拷贝的C末端核纤溶酶NLS融合和RanGAP共表达,将编码膜结合临床抗体abrilumab的DNA稳定整合到CHO细胞的基因组中.与缺乏NLS融合的Bxbl整合酶相比,该方法证明整合效率增加超过14倍。
    结论:本研究表明,优化Bxb1整合酶的NLS序列融合显著增强了稳定的基因组整合效率。这些发现为通过将基因稳定整合到基因组着陆垫中在哺乳动物细胞中构建更大的文库提供了实用的方法。
    BACKGROUND: Mammalian display is an appealing technology for therapeutic antibody development. Despite the advantages of mammalian display, such as full-length IgG display with mammalian glycosylation and its inherent ability to select antibodies with good biophysical properties, the restricted library size and large culture volumes remain challenges. Bxb1 serine integrase is commonly used for the stable genomic integration of antibody genes into mammalian cells, but presently lacks the efficiency required for the display of large mammalian display libraries. To increase the Bxb1 integrase-mediated stable integration efficiency, our study investigates factors that potentially affect the nuclear localization of Bxb1 integrase.
    METHODS: In an attempt to enhance Bxb1 serine integrase-mediated integration efficiency, we fused various nuclear localization signals (NLS) to the N- and C-termini of the integrase. Concurrently, we co-expressed multiple proteins associated with nuclear transport to assess their impact on the stable integration efficiency of green fluorescent protein (GFP)-encoding DNA and an antibody display cassette into the genome of Chinese hamster ovary (CHO) cells containing a landing pad for Bxb1 integrase-mediated integration.
    RESULTS: The nucleoplasmin NLS from Xenopus laevis, when fused to the C-terminus of Bxb1 integrase, demonstrated the highest enhancement in stable integration efficiency among the tested NLS fusions, exhibiting over a 6-fold improvement compared to Bxb1 integrase lacking an NLS fusion. Subsequent additions of extra NLS fusions to the Bxb1 integrase revealed an additional 131% enhancement in stable integration efficiency with the inclusion of two copies of C-terminal nucleoplasmin NLS fusions. Further improvement was achieved by co-expressing the Ran GTPase-activating protein (RanGAP). Finally, to validate the applicability of these findings to more complex proteins, the DNA encoding the membrane-bound clinical antibody abrilumab was stably integrated into the genome of CHO cells using Bxb1 integrase with two copies of C-terminal nucleoplasmin NLS fusions and co-expression of RanGAP. This approach demonstrated over 14-fold increase in integration efficiency compared to Bxb1 integrase lacking an NLS fusion.
    CONCLUSIONS: This study demonstrates that optimizing the NLS sequence fusion for Bxb1 integrase significantly enhances the stable genomic integration efficiency. These findings provide a practical approach for constructing larger libraries in mammalian cells through the stable integration of genes into a genomic landing pad.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    Poxviridae的正痘病毒(OPXV)属包括人类病原体天花病毒(VARV),猴痘病毒(MPXV),痘苗病毒(VACV),和一些人畜共患病毒。VACV的许多Bcl-2样蛋白参与逃避宿主先天免疫。然而,在其他OPXVs中,很少有工作致力于其直系同源物的进化和功能。这里,我们发现由P2L基因编码的MPXV蛋白P2,和来自其他OPXV的P2直系同源物,例如VACV蛋白N2,定位于细胞核并拮抗干扰素(IFN)的产生。例外的是缺少核定位信号(NLS)的骆驼痘病毒(CMLV)和taterapox病毒(TATV)中的截短的P2直向同源物。机械上,MPXVP2的NLS与核蛋白α-2(KPNA2)相互作用以促进P2核易位,并竞争性抑制KPNA2介导的IRF3核易位和下游IFN的产生。在P2或直系同源物中NLS的缺失显着增强IRF3核易位和先天免疫反应,从而减少病毒复制。此外,在VACV中从N2中缺失NLS减弱了小鼠中的病毒复制和毒力。这些数据表明,NLS介导的P2易位对于P2诱导的先天免疫抑制至关重要。我们的发现有助于深入了解OPXVP2直向同源物在先天免疫逃避中的机制。
    The Orthopoxvirus (OPXV) genus of the Poxviridae includes human pathogens variola virus (VARV), monkeypox virus (MPXV), vaccinia virus (VACV), and a number of zoonotic viruses. A number of Bcl-2-like proteins of VACV are involved in escaping the host innate immunity. However, little work has been devoted to the evolution and function of their orthologues in other OPXVs. Here, we found that MPXV protein P2, encoded by the P2L gene, and P2 orthologues from other OPXVs, such as VACV protein N2, localize to the nucleus and antagonize interferon (IFN) production. Exceptions to this were the truncated P2 orthologues in camelpox virus (CMLV) and taterapox virus (TATV) that lacked the nuclear localization signal (NLS). Mechanistically, the NLS of MPXV P2 interacted with karyopherin α-2 (KPNA2) to facilitate P2 nuclear translocation, and competitively inhibited KPNA2-mediated IRF3 nuclear translocation and downstream IFN production. Deletion of the NLS in P2 or orthologues significantly enhanced IRF3 nuclear translocation and innate immune responses, thereby reducing viral replication. Moreover, deletion of NLS from N2 in VACV attenuated viral replication and virulence in mice. These data demonstrate that the NLS-mediated translocation of P2 is critical for P2-induced inhibition of innate immunity. Our findings contribute to an in-depth understanding of the mechanisms of OPXV P2 orthologue in innate immune evasion.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    委内瑞拉马脑炎病毒(VEEV)是一种高毒力病原体,其衣壳蛋白的核定位信号(NLS)序列与宿主importin-α转运蛋白结合并阻断核输入。我们研究了两个小配体的分子机制,称为I1和I2,干扰VEEV的NLS肽与importin-α蛋白的结合。为此,我们进行了全原子复制交换分子动力学模拟,探索了VEEV核心NLS肽和I1或I2配体与importin-α主要NLS结合位点的竞争性结合。作为参考,我们用之前的模拟,检查了coreNLS肽或抑制剂与importin-α的非竞争性结合。我们发现这两种抑制剂都完全消除了核心NLS肽的天然结合,迫使其在importin-α主要NLS结合位点内采用多种非天然松散结合的姿势。两种抑制剂主要通过掩蔽其氨基酸而不是与其竞争结合importin-α来使天然coreNLS结合不稳定。因为I2与I1相反,结合位点外定位在主要NLS结合位点的边缘,与I1相比,它抑制较少的coreNLS天然结合相互作用。结构分析得到了在有或没有来自抑制剂的竞争的情况下与importin-α结合的核NLS肽的自由能的计算的支持。具体来说,这两种抑制剂都降低了核心NLS结合的自由能增益,I1造成的损失明显大于I2。为了测试我们的模拟,我们进行了AlphaScreen实验,测量两种抑制剂的IC50值.与计算机模拟结果一致,发现I1的IC50值低于I2的IC50值。我们假设I1和I2配体的抑制作用可能对VEEV衣壳蛋白的NLS具有特异性。
    Venezuelan equine encephalitis virus (VEEV) is a highly virulent pathogen whose nuclear localization signal (NLS) sequence from capsid protein binds to the host importin-α transport protein and blocks nuclear import. We studied the molecular mechanisms by which two small ligands, termed I1 and I2, interfere with the binding of VEEV\'s NLS peptide to importin-α protein. To this end, we performed all-atom replica exchange molecular dynamics simulations probing the competitive binding of the VEEV coreNLS peptide and I1 or I2 ligand to the importin-α major NLS binding site. As a reference, we used our previous simulations, which examined noncompetitive binding of the coreNLS peptide or the inhibitors to importin-α. We found that both inhibitors completely abrogate the native binding of the coreNLS peptide, forcing it to adopt a manifold of nonnative loosely bound poses within the importin-α major NLS binding site. Both inhibitors primarily destabilize the native coreNLS binding by masking its amino acids rather than competing with it for binding to importin-α. Because I2, in contrast to I1, binds off-site localizing on the edge of the major NLS binding site, it inhibits fewer coreNLS native binding interactions than I1. Structural analysis is supported by computations of the free energies of the coreNLS peptide binding to importin-α with or without competition from the inhibitors. Specifically, both inhibitors reduce the free energy gain from coreNLS binding, with I1 causing significantly larger loss than I2. To test our simulations, we performed AlphaScreen experiments measuring IC50 values for both inhibitors. Consistent with in silico results, the IC50 value for I1 was found to be lower than that for I2. We hypothesize that the inhibitory action of I1 and I2 ligands might be specific to the NLS from VEEV\'s capsid protein.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    有效应对复杂病理状况的关键方面之一是在空间和时间上精确地递送所需的治疗化合物。因此,对核靶向运载系统的关注已经成为一项潜力巨大的有希望的战略,特别是在基因治疗和癌症治疗中。这里,我们探索了超分子纳米组装体作为载体的设计,以将特定化合物传递到细胞核,特别关注暴露核定位信号的聚合物和基于肽的载体。这样的纳米组装体旨在最大化细胞核内遗传和治疗剂的浓度,从而优化治疗结果,同时最小化脱靶效应。复杂的情况,包括细胞摄取,内体逃逸,和核易位,需要微调纳米载体的属性。首先,我们介绍了核导入的原理和核孔复合物的作用,揭示了纳米系统靶向核的策略。然后,我们概述了依赖于核定位以实现最佳活性的货物,因为它们的完整性和积累是设计合适的输送系统时需要考虑的关键参数。考虑到他们正处于研究的早期阶段,我们提出了各种货物负载的肽和聚合物纳米组装,促进核靶向,强调它们增强治疗反应的潜力。最后,我们简要讨论了更精确和有效的核输送的进一步进展。
    One of the key aspects of coping efficiently with complex pathological conditions is delivering the desired therapeutic compounds with precision in both space and time. Therefore, the focus on nuclear-targeted delivery systems has emerged as a promising strategy with high potential, particularly in gene therapy and cancer treatment. Here, we explore the design of supramolecular nanoassemblies as vehicles to deliver specific compounds to the nucleus, with the special focus on polymer and peptide-based carriers that expose nuclear localization signals. Such nanoassemblies aim at maximizing the concentration of genetic and therapeutic agents within the nucleus, thereby optimizing treatment outcomes while minimizing off-target effects. A complex scenario of conditions, including cellular uptake, endosomal escape, and nuclear translocation, requires fine tuning of the nanocarriers\' properties. First, we introduce the principles of nuclear import and the role of nuclear pore complexes that reveal strategies for targeting nanosystems to the nucleus. Then, we provide an overview of cargoes that rely on nuclear localization for optimal activity as their integrity and accumulation are crucial parameters to consider when designing a suitable delivery system. Considering that they are in their early stages of research, we present various cargo-loaded peptide- and polymer nanoassemblies that promote nuclear targeting, emphasizing their potential to enhance therapeutic response. Finally, we briefly discuss further advancements for more precise and effective nuclear delivery.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    随着单细胞多组学的出现,结构细胞在免疫调节中的关键作用已经被揭示。但潜在的机制仍然知之甚少。这里,我们揭示了干扰素调节因子1(IRF1)的转录激活响应电离辐射,细胞毒性化学物质和SARS-CoV-2病毒感染决定了结构细胞的命运,并调节了结构细胞和免疫细胞之间的通讯。辐射诱导的mtDNA泄漏引发IRF1的核易位,使其能够调节炎症和细胞死亡相关基因的转录。鉴定了IRF1核定位序列(NLS)中的新翻译后修饰(PTM)位点。功能分析显示,NLS中乙酰化位点和磷酸化位点的突变阻断了IRF1的转录激活,并减少了响应电离辐射的细胞死亡。机械上,揭示了单链DNA传感器SSBP1和IRF1之间的相互调节,该调节抑制了辐射诱导的和STING/p300介导的IRF1PTM。此外,遗传缺失或药理学抑制IRF1温和辐射诱导的炎性细胞死亡,和辐射缓解剂还抑制SARS-CoV-2NSP-10介导的IRF1激活。因此,我们揭示了一种促进炎症的结构细胞中IRF1激活的新的细胞质导向机制,并强调了IRF1抑制剂对免疫疾病的潜在有效性.
    The key role of structural cells in immune modulation has been revealed with the advent of single-cell multiomics, but the underlying mechanism remains poorly understood. Here, we revealed that the transcriptional activation of interferon regulatory factor 1 (IRF1) in response to ionizing radiation, cytotoxic chemicals and SARS-CoV-2 viral infection determines the fate of structural cells and regulates communication between structural and immune cells. Radiation-induced leakage of mtDNA initiates the nuclear translocation of IRF1, enabling it to regulate the transcription of inflammation- and cell death-related genes. Novel posttranslational modification (PTM) sites in the nuclear localization sequence (NLS) of IRF1 were identified. Functional analysis revealed that mutation of the acetylation site and the phosphorylation sites in the NLS blocked the transcriptional activation of IRF1 and reduced cell death in response to ionizing radiation. Mechanistically, reciprocal regulation between the single-stranded DNA sensors SSBP1 and IRF1, which restrains radiation-induced and STING/p300-mediated PTMs of IRF1, was revealed. In addition, genetic deletion or pharmacological inhibition of IRF1 tempered radiation-induced inflammatory cell death, and radiation mitigators also suppressed SARS-CoV-2 NSP-10-mediated activation of IRF1. Thus, we revealed a novel cytoplasm-oriented mechanism of IRF1 activation in structural cells that promotes inflammation and highlighted the potential effectiveness of IRF1 inhibitors against immune disorders.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    背景:默克尔细胞癌(MCC)是一种侵袭性皮肤癌,比黑色素瘤致命三倍。2008年,发现80%的MCC病例是由一种新型多瘤病毒的基因组整合引起的,默克尔细胞多瘤病毒(MCPyV),及其小的和截短的大的肿瘤抗原的表达(ST和LT-t,分别)。MCPyV属于人类多瘤病毒家族;然而,它是唯一与癌症有明确关联的。
    方法:为了研究各种多瘤病毒肿瘤抗原在细胞转化中的作用和机制,用pLENTIMCPyVLT-t转导大鼠2和293A细胞,MCPyVST,TSPyVST,HPyV7ST,或空pLENTI并通过多种转化测定进行评估,和亚细胞分裂。使用单因素方差分析检验来评估统计学显著性。
    结果:软琼脂,扩散,倍增时间,葡萄糖摄取,和血清依赖性测定证实ST是MCPyV的主要转化蛋白。此外,发现MCPyVST是独特的转化,与其他非癌性人多瘤病毒的ST抗原一样,在进行类似评估时,丝裂体发育不全的脊髓相关多瘤病毒(TSPyV)和人多瘤病毒7(HPyV7)没有转化.转化和非转化肿瘤抗原之间的结构差异的鉴定揭示MCPyVST的独特转化结构域可能位于MCPyVST独特区域的结构上不同的环内。在所有已知的MCPyVST细胞相互作用器中,62%是完全或暂时的核,表明尽管没有经典的核定位信号,但MCPyVST仍位于细胞核。的确,亚细胞分馏证实,MCPyVST可以通过目前未知的,调节机制独立于其小尺寸,因为HPyV7和TSPyVST蛋白不能核易位。尽管发现核定位对MCPyVST的几种转化特性很重要,细胞质隔离的MCPyVST也具有一些特性,提示MCPyVST可能在各个亚细胞区室中执行不同的转化功能。
    结论:一起,这些数据进一步阐明了MCPyVST和其他多瘤病毒ST蛋白之间的独特差异,这对于理解MCPyV是唯一已知的人类致癌多瘤病毒是必要的.
    BACKGROUND: Merkel Cell Carcinoma (MCC) is an aggressive skin cancer that is three times deadlier than melanoma. In 2008, it was found that 80% of MCC cases are caused by the genomic integration of a novel polyomavirus, Merkel Cell Polyomavirus (MCPyV), and the expression of its small and truncated large tumor antigens (ST and LT-t, respectively). MCPyV belongs to a family of human polyomaviruses; however, it is the only one with a clear association to cancer.
    METHODS: To investigate the role and mechanisms of various polyomavirus tumor antigens in cellular transformation, Rat-2 and 293A cells were transduced with pLENTI MCPyV LT-t, MCPyV ST, TSPyV ST, HPyV7 ST, or empty pLENTI and assessed through multiple transformation assays, and subcellular fractionations. One-way ANOVA tests were used to assess statistical significance.
    RESULTS: Soft agar, proliferation, doubling time, glucose uptake, and serum dependence assays confirmed ST to be the dominant transforming protein of MCPyV. Furthermore, it was found that MCPyV ST is uniquely transforming, as the ST antigens of other non-oncogenic human polyomaviruses such as Trichodysplasia Spinulosa-Associated Polyomavirus (TSPyV) and Human Polyomavirus 7 (HPyV7) were not transforming when similarly assessed. Identification of structural dissimilarities between transforming and non-transforming tumor antigens revealed that the uniquely transforming domain(s) of MCPyV ST are likely located within the structurally dissimilar loops of the MCPyV ST unique region. Of all known MCPyV ST cellular interactors, 62% are exclusively or transiently nuclear, suggesting that MCPyV ST localizes to the nucleus despite the absence of a canonical nuclear localization signal. Indeed, subcellular fractionations confirmed that MCPyV ST could achieve nuclear localization through a currently unknown, regulated mechanism independent of its small size, as HPyV7 and TSPyV ST proteins were incapable of nuclear translocation. Although nuclear localization was found to be important for several transforming properties of MCPyV ST, some properties were also performed by a cytoplasmic sequestered MCPyV ST, suggesting that MCPyV ST may perform different transforming functions in individual subcellular compartments.
    CONCLUSIONS: Together, these data further elucidate the unique differences between MCPyV ST and other polyomavirus ST proteins necessary to understand MCPyV as the only known human oncogenic polyomavirus.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    登革病毒(DENV)非结构蛋白5(NS5),由甲基转移酶和RNA依赖性RNA聚合酶(RdRp)结构域组成,对于细胞质中内质网衍生的复制复合物内的病毒RNA合成至关重要。然而,对于DENV2,3和4,很大比例的NS5定位于受感染细胞的细胞核,而DENV1NS5扩散定位于细胞质中.我们仍然不完全了解DENVNS5亚细胞定位是如何调节的。在NS5中,已鉴定出两个推定的核定位信号(NLS)序列:位于RdRp结构域的手掌中的NLSCentral以及最近发现的位于RdRpC端的柔性区域中的NLSC术语结构域。我们先前已经表明DENV2NS5核定位可以通过NLSC术语的单点突变而显着减少。这里,我们展示了生化,病毒学,和结构数据表明NLS在NS5核定位中的相对重要性对于四种DENV血清型中的每一种是独特的。DENV1NS5的细胞质定位似乎是由于其NLSCentral和importin-α(IMPa)之间的功能弱相互作用,而DENV2NS5通过其NLSC术语与IMPa的强相互作用几乎完全是核。DENV3NS5的两个NLS似乎都有助于指导其核定位。最后,在DENV4的情况下,其NS5核定位的调节仍然是一个谜,但似乎与其NLSC术语相关.
    Dengue virus (DENV) nonstructural protein 5 (NS5), consisting of methyltransferase and RNA-dependent RNA polymerase (RdRp) domains, is critical for viral RNA synthesis within endoplasmic reticulum-derived replication complexes in the cytoplasm. However, a significant proportion of NS5 is localized to the nucleus of infected cells for DENV2, 3, and 4, whereas DENV1 NS5 is localized diffusely in the cytoplasm. We still have an incomplete understanding of how the DENV NS5 subcellular localization is regulated. Within NS5, two putative nuclear localization signal (NLS) sequences have been identified: NLSCentral residing in the palm of the RdRp domain as well as the recently discovered NLSC-term residing in the flexible region at the C-terminal of the RdRp domain. We have previously shown that DENV2 NS5 nuclear localization can be significantly reduced by single-point mutations to the NLSC-term. Here, we present biochemical, virological, and structural data demonstrating that the relative importance of either NLS in NS5 nuclear localization is unique to each of the four DENV serotypes. DENV1 NS5\'s cytoplasmic localization appears to be due to a functionally weak interaction between its NLSCentral and importin-α (IMPα), while DENV2 NS5 is almost exclusively nuclear through its NLSC-term\'s strong interaction with IMPα. Both NLSs of DENV3 NS5 appear to contribute to directing its nuclear localization. Lastly, in the case of DENV4, the regulation of its NS5 nuclear localization remains an enigma but appears to be associated with its NLSC-term.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号