NuRD

NuRD
  • 文章类型: Journal Article
    不对称细胞分裂(ACDs)通过表观遗传机制产生具有相同遗传信息但不同细胞命运的两个子细胞。然而,将不同的表观遗传信息分为子细胞的过程尚不清楚.这里,我们证明,在秀丽隐杆线虫的ACD过程中,核小体重塑和脱乙酰酶(NuRD)复合物不对称地分离到存活的子细胞中,而不是凋亡的子细胞中。NuRD的缺失通过EGL-1-CED-9-CED-4-CED-3通路触发细胞凋亡,而NuRD的异位获得使凋亡的子细胞能够存活。我们确定液泡H-腺苷三磷酸酶(V-ATPase)复合物是NuRD不对称分离的关键调节剂。V-ATP酶与NuRD相互作用,并不对称地分离到存活的子细胞中。抑制V-ATPase破坏细胞溶质pH不对称性和NuRD不对称性。我们建议V-ATPase的不对称分离可能会导致两个子细胞中不同的酸化水平。实现不对称表观遗传,指定他们各自的生与死命运。
    Asymmetric cell divisions (ACDs) generate two daughter cells with identical genetic information but distinct cell fates through epigenetic mechanisms. However, the process of partitioning different epigenetic information into daughter cells remains unclear. Here, we demonstrate that the nucleosome remodeling and deacetylase (NuRD) complex is asymmetrically segregated into the surviving daughter cell rather than the apoptotic one during ACDs in Caenorhabditis elegans. The absence of NuRD triggers apoptosis via the EGL-1-CED-9-CED-4-CED-3 pathway, while an ectopic gain of NuRD enables apoptotic daughter cells to survive. We identify the vacuolar H+-adenosine triphosphatase (V-ATPase) complex as a crucial regulator of NuRD\'s asymmetric segregation. V-ATPase interacts with NuRD and is asymmetrically segregated into the surviving daughter cell. Inhibition of V-ATPase disrupts cytosolic pH asymmetry and NuRD asymmetry. We suggest that asymmetric segregation of V-ATPase may cause distinct acidification levels in the two daughter cells, enabling asymmetric epigenetic inheritance that specifies their respective life-versus-death fates.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    在E4.5植入前上胚中建立了多能性。胚胎干细胞(ESC)代表多能性的永生化,然而,它们的基因表达特征仅部分类似于发育基态。诱导PRAMEL7表达,一种在ICM中高表达但在ESC中低表达的蛋白质,通过诱导接近发育基态的基因表达特征,将发育先进的ESC+血清重新编程为基态多能性。然而,PRAMEL7如何重新编程基因表达仍然难以捉摸。在这里,我们表明PRAMEL7与Cullin2(CUL2)相关,并且这种相互作用是建立基态基因表达所必需的。PRAMEL7将CUL2招募到染色质中,并靶向抑制性染色质的调节剂,包括NuRD建筑群,用于蛋白酶体退化。PRAMEL7通过以CUL2依赖性方式降低NuRD稳定性和启动子关联来拮抗NuRD介导的多能性基因抑制。我们的数据将蛋白酶体降解途径与基态基因表达联系起来,提供见解,以生成体外模型,以再现体内基态多能性。
    Pluripotency is established in E4.5 preimplantation epiblast. Embryonic stem cells (ESCs) represent the immortalization of pluripotency, however, their gene expression signature only partially resembles that of developmental ground-state. Induced PRAMEL7 expression, a protein highly expressed in the ICM but lowly expressed in ESCs, reprograms developmentally advanced ESC+serum into ground-state pluripotency by inducing a gene expression signature close to developmental ground-state. However, how PRAMEL7 reprograms gene expression remains elusive. Here we show that PRAMEL7 associates with Cullin2 (CUL2) and this interaction is required to establish ground-state gene expression. PRAMEL7 recruits CUL2 to chromatin and targets regulators of repressive chromatin, including the NuRD complex, for proteasomal degradation. PRAMEL7 antagonizes NuRD-mediated repression of genes implicated in pluripotency by decreasing NuRD stability and promoter association in a CUL2-dependent manner. Our data link proteasome degradation pathways to ground-state gene expression, offering insights to generate in vitro models to reproduce the in vivo ground-state pluripotency.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    核孔蛋白(Nups)的突变或失调与神经发育疾病密切相关,然而,潜在的机制仍然知之甚少。这里,我们表明,radial神经胶质祖细胞中NupSeh1的耗竭导致神经祖细胞的增殖和分化缺陷,最终表现为神经发生受损和小头畸形。干细胞增殖的这种丧失与核质转运缺陷无关。相反,转录组分析表明,神经干细胞中Seh1的消融抑制了p21的表达,而p21的敲除部分恢复了自我更新能力。机械上,Seh1与核外围的NuRD转录抑制复合物合作以调节p21表达。一起,这些发现确定Nups通过发挥染色质相关作用并影响神经干细胞增殖来调节大脑发育。
    Mutations or dysregulation of nucleoporins (Nups) are strongly associated with neural developmental diseases, yet the underlying mechanisms remain poorly understood. Here, we show that depletion of Nup Seh1 in radial glial progenitors results in defective neural progenitor proliferation and differentiation that ultimately manifests in impaired neurogenesis and microcephaly. This loss of stem cell proliferation is not associated with defects in the nucleocytoplasmic transport. Rather, transcriptome analysis showed that ablation of Seh1 in neural stem cells derepresses the expression of p21, and knockdown of p21 partially restored self-renewal capacity. Mechanistically, Seh1 cooperates with the NuRD transcription repressor complex at the nuclear periphery to regulate p21 expression. Together, these findings identified that Nups regulate brain development by exerting a chromatin-associated role and affecting neural stem cell proliferation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    先锋转录因子(TF)通过建立转录引发和活性状态来调节细胞命运。然而,细胞命运控制需要协调谱系特异性基因激活和替代谱系程序的抑制,这是一个鲜为人知的过程。这里,我们证明了先驱TFFOXA与PRDM1TF协调以募集核小体重塑和去乙酰化(NuRD)复合物和Polycomb抑制复合物(PRCs),建立高度占用的,具有二价表观遗传状态的可接近核小体构象,从而防止人类内胚层分化过程中的早熟和替代谱系基因表达。同样,先驱TFOCT4与PRDM14协调形成二价增强子并抑制人类多能干细胞中的细胞分化程序,这表明这可能是先驱TFs的共同和关键功能。我们建议先驱和PRDMTFs通过表观遗传抑制机制协调保护细胞命运。
    Pioneer transcription factors (TFs) regulate cell fate by establishing transcriptionally primed and active states. However, cell fate control requires the coordination of both lineage-specific gene activation and repression of alternative-lineage programs, a process that is poorly understood. Here, we demonstrate that the pioneer TF FOXA coordinates with PRDM1 TF to recruit nucleosome remodeling and deacetylation (NuRD) complexes and Polycomb repressive complexes (PRCs), which establish highly occupied, accessible nucleosome conformation with bivalent epigenetic states, thereby preventing precocious and alternative-lineage gene expression during human endoderm differentiation. Similarly, the pioneer TF OCT4 coordinates with PRDM14 to form bivalent enhancers and repress cell differentiation programs in human pluripotent stem cells, suggesting that this may be a common and critical function of pioneer TFs. We propose that pioneer and PRDM TFs coordinate to safeguard cell fate through epigenetic repression mechanisms.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    当细胞退出多能状态并开始致力于特定谱系时,它们必须激活适合该谱系的基因,同时沉默与多能性相关的基因并防止谱系不合适基因的激活。核小体重塑和去乙酰化(NuRD)复合物对于多能细胞成功进行谱系定型至关重要。NuRD控制调节序列的核小体密度,以促进转录反应。并且还已被证明可以防止未分化的多能细胞中的非计划转录(转录噪声)。尚未确定这些活动如何结合以确保细胞参与适合于成功谱系承诺的基因表达程序。在这里,我们表明NuRD不需要沉默所有的基因。相反,它限制了从多能状态退出后激活的基因的表达,但在自我更新条件下将它们保持在转录许可状态,这有助于它们在从幼稚多能性退出后的后续激活。我们进一步表明,NuRD协调基因表达变化,它的作用是在不同的稳定状态之间保持屏障。因此,NuRD介导的染色质重塑具有多种功能,包括减少转录噪音,激活和协调转录反应以促进谱系承诺的启动基因。
    As cells exit the pluripotent state and begin to commit to a specific lineage they must activate genes appropriate for that lineage while silencing genes associated with pluripotency and preventing activation of lineage-inappropriate genes. The Nucleosome Remodelling and Deacetylation (NuRD) complex is essential for pluripotent cells to successfully undergo lineage commitment. NuRD controls nucleosome density at regulatory sequences to facilitate transcriptional responses, and also has been shown to prevent unscheduled transcription (transcriptional noise) in undifferentiated pluripotent cells. How these activities combine to ensure cells engage a gene expression program suitable for successful lineage commitment has not been determined. Here, we show that NuRD is not required to silence all genes. Rather, it restricts expression of genes primed for activation upon exit from the pluripotent state, but maintains them in a transcriptionally permissive state in self-renewing conditions, which facilitates their subsequent activation upon exit from naïve pluripotency. We further show that NuRD coordinates gene expression changes, which acts to maintain a barrier between different stable states. Thus NuRD-mediated chromatin remodelling serves multiple functions, including reducing transcriptional noise, priming genes for activation and coordinating the transcriptional response to facilitate lineage commitment.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    Mowat-Wilson综合征是由ZEB2中的突变引起的,患者表现出指示神经c(NC)缺陷的特征。我们使用基于人胚胎干细胞的模型检查了ZEB2对人NC形成的贡献。我们发现ZEB2是在预期的人NC中表达的最早的因子之一,敲除揭示了ZEB2在建立NC状态中的作用,同时抑制了胎盘前和非神经外胚层基因。对ZEB2N末端突变NC细胞的检查表明,它需要抑制NC基因网络中的增强子,并适当地将NC细胞末端分化成成骨细胞,周围神经元和神经胶质。这种ZEB2突变导致BMP信号配体的早期错误表达,可以通过BMP的衰减来挽救。我们的发现表明,ZEB2通过调节适当的BMP信号传导来调节早期人类NC规范,并进一步阐述了Mowat-Wilson综合征的分子缺陷。
    Mowat-Wilson syndrome is caused by mutations in ZEB2, with patients exhibiting characteristics indicative of neural crest (NC) defects. We examined the contribution of ZEB2 to human NC formation using a model based on human embryonic stem cells. We found ZEB2 to be one of the earliest factors expressed in prospective human NC, and knockdown revealed a role for ZEB2 in establishing the NC state while repressing pre-placodal and non-neural ectoderm genes. Examination of ZEB2 N-terminal mutant NC cells demonstrates its requirement for the repression of enhancers in the NC gene network and proper NC cell terminal differentiation into osteoblasts and peripheral neurons and neuroglia. This ZEB2 mutation causes early misexpression of BMP signaling ligands, which can be rescued by the attenuation of BMP. Our findings suggest that ZEB2 regulates early human NC specification by modulating proper BMP signaling and further elaborate the molecular defects underlying Mowat-Wilson syndrome.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    TWIST1诱导上皮-间质转化(EMT)以驱动癌症转移。目前尚不清楚是什么决定了TWIST1激活或抑制转录的功能。我们发现TWIST1N端拮抗TWIST1调节的基因表达,癌症生长和转移。TWIST1通过其N端与NuRD复合物和NuA4/TIP60复合物(TIP60-Com)相互作用。非乙酰化TWIST1-K73/76选择性地与NuRD相互作用并募集NuRD以抑制上皮靶基因转录。二乙酰化的TWIST1-acK73/76结合BRD8,BRD8是TIP60-Com的组成部分,也结合组蛋白H4-acK5/8,以招募TIP60-Com激活间充质靶基因和MYC。敲除BRD8消除了TWIST1和TIP60-Com相互作用以及TIP60-Com对TWIST1激活基因的募集,导致TWIST1激活的靶基因表达降低和癌症转移。TWIST1/NuRD和TWIST1/TIP60-Com复合物都需要TWIST1来促进EMT,扩散,满负荷转移。因此,TWIST1-K73/76的二乙酰化状态决定了TWIST1是否与NuRD相互作用以抑制上皮基因,或使用TIP60-Com激活间充质基因和MYC。由于BRD8对于TWIST1-acK73/76和TIP60-Com交互至关重要,靶向BRD8可能是抑制TWIST1激活基因表达的一种手段。
    TWIST1 induces epithelial-to-mesenchymal transition (EMT) to drive cancer metastasis. It is yet unclear what determines TWIST1 functions to activate or repress transcription. We found that the TWIST1 N-terminus antagonizes TWIST1-regulated gene expression, cancer growth and metastasis. TWIST1 interacts with both the NuRD complex and the NuA4/TIP60 complex (TIP60-Com) via its N-terminus. Non-acetylated TWIST1-K73/76 selectively interacts with and recruits NuRD to repress epithelial target gene transcription. Diacetylated TWIST1-acK73/76 binds BRD8, a component of TIP60-Com that also binds histone H4-acK5/8, to recruit TIP60-Com to activate mesenchymal target genes and MYC. Knockdown of BRD8 abolishes TWIST1 and TIP60-Com interaction and TIP60-Com recruitment to TWIST1-activated genes, resulting in decreasing TWIST1-activated target gene expression and cancer metastasis. Both TWIST1/NuRD and TWIST1/TIP60-Com complexes are required for TWIST1 to promote EMT, proliferation, and metastasis at full capacity. Therefore, the diacetylation status of TWIST1-K73/76 dictates whether TWIST1 interacts either with NuRD to repress epithelial genes, or with TIP60-Com to activate mesenchymal genes and MYC. Since BRD8 is essential for TWIST1-acK73/76 and TIP60-Com interaction, targeting BRD8 could be a means to inhibit TWIST1-activated gene expression.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    核小体重塑和脱乙酰酶(NuRD)复合物代表哺乳动物细胞中主要的染色质重塑复合物之一,通过诱导核小体滑动与组蛋白脱乙酰酶活性独特地耦合“打开”染色质的能力。NuRD复合物的核心是称为CHD的ATPase家族,它们利用ATP水解产生的能量来诱导染色质结构变化。最近的研究强调了NuRD在调节大脑发育过程中的基因表达和维持成年小脑中的神经元回路中所起的重要作用。重要的是,已发现NuRD复合体的组成部分携带突变,深刻地影响人类的神经和认知发育。这里,我们讨论了有关NuRD复合物的分子结构以及亚基组成和众多排列如何极大地决定其在神经系统中的功能的最新文献。我们还将讨论CHD家族成员在一系列神经发育障碍中的作用。将特别强调调节皮层中NuRD复合物组成和组装的机制,以及微妙的突变如何导致大脑发育和成人神经系统的严重缺陷。
    The Nucleosome Remodelling and Deacetylase (NuRD) complex represents one of the major chromatin remodelling complexes in mammalian cells, uniquely coupling the ability to \"open\" the chromatin by inducing nucleosome sliding with histone deacetylase activity. At the core of the NuRD complex are a family of ATPases named CHDs that utilise the energy produced by the hydrolysis of the ATP to induce chromatin structural changes. Recent studies have highlighted the prominent role played by the NuRD in regulating gene expression during brain development and in maintaining neuronal circuitry in the adult cerebellum. Importantly, components of the NuRD complex have been found to carry mutations that profoundly affect neurological and cognitive development in humans. Here, we discuss recent literature concerning the molecular structure of NuRD complexes and how the subunit composition and numerous permutations greatly determine their functions in the nervous system. We will also discuss the role of the CHD family members in an array of neurodevelopmental disorders. Special emphasis will be given to the mechanisms that regulate the NuRD complex composition and assembly in the cortex and how subtle mutations may result in profound defects of brain development and the adult nervous system.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    染色质重塑酶形成大的多蛋白复合物,在调节基因组的访问中起着核心作用。这里,我们描述了人类CHD4蛋白的核输入。我们表明CHD4通过几种输入蛋白α(1、5、6和7)进入细胞核,而与输入蛋白β1无关。输入蛋白α1直接与CHD4N末端的“KRKR”基序相互作用(aa304-307)。然而,该基序的丙氨酸诱变仅导致约。CHD4的核本地化减少50%,意味着额外的进口机制。有趣的是,我们可以证明CHD4已经与细胞质中的NuRD核心亚基如MTA2,HDAC1或RbAp46相关,建议在核进口之前组装NuRD核心综合体。我们建议,除了importin-alpha依赖的核定位信号,使用相关NuRD亚基的导入信号,通过“搭载机制”将CHD4拖入细胞核。
    Chromatin remodeling enzymes form large multiprotein complexes that play central roles in regulating access to the genome. Here, we characterize the nuclear import of the human CHD4 protein. We show that CHD4 enters the nucleus by means of several importin-α proteins (1, 5, 6 and 7), but independently of importin β1. Importin α1 directly interacts with a monopartite \'KRKR\'-motif in the N-terminus of CHD4 (amino acids 304-307). However, alanine mutagenesis of this motif only leads to an ∼50% reduction in nuclear localization of CHD4, implying that there are additional import mechanisms. Interestingly, we could show that CHD4 was already associated with the nucleosome remodeling deacetylase (NuRD) core subunits, such as MTA2, HDAC1 and RbAp46 (also known as RBBP7), in the cytoplasm, suggesting an assembly of the NuRD core complex before nuclear import. We propose that, in addition to the importin-α-dependent nuclear localization signal, CHD4 is dragged into the nucleus by a \'piggyback\' mechanism using the import signals of the associated NuRD subunits.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    During neuronal development, extensive changes to chromatin states occur to regulate lineage-specific gene expression. The molecular factors underlying the repression of non-neuronal genes in differentiated neurons are poorly characterised. The Mi2/NuRD complex is a multiprotein complex with nucleosome remodelling and histone deacetylase activity. Whilst NuRD has previously been implicated in the development of nervous system tissues, the precise nature of the gene expression programmes that it coordinates is ill-defined. Furthermore, evidence from several species suggests that Mi-2 may be incorporated into multiple complexes that may not possess histone deacetylase activity. We show that Mi-2 activity is required for suppressing ectopic expression of germline genes in neurons independently of HDAC1/NuRD, whilst components of NuRD, including Mi-2, regulate neural gene expression to ensure proper development of the larval nervous system. We find that Mi-2 binding in the genome is dynamic during neuronal maturation, and Mi-2-mediated repression of ectopic gene expression is restricted to the early stages of neuronal development, indicating that Mi-2/NuRD is required for establishing stable neuronal transcriptomes during the early stages of neuronal differentiation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号