Neuronal identity

神经元身份
  • 文章类型: Journal Article
    果蝇神经系统发育通过一系列特征明确的步骤进行,其中同源结构域转录因子(HDTFs)在大多数过程中发挥关键作用,如果不是全部,阶段。引人注目的是,虽然一些HDTF只有一个角色,许多其他人参与了发展过程的多个步骤。大多数参与神经系统发育的果蝇HDTF在脊椎动物中都是保守的,并且在脊椎动物发育过程中经常发挥类似的作用。在这个聚光灯下,我们关注HDTFs在胚胎发育过程中的作用,他们最初被描述的地方。
    Drosophila nervous system development progresses through a series of well-characterized steps in which homeodomain transcription factors (HDTFs) play key roles during most, if not all, phases. Strikingly, although some HDTFs have only one role, many others are involved in multiple steps of the developmental process. Most Drosophila HDTFs engaged in nervous system development are conserved in vertebrates and often play similar roles during vertebrate development. In this Spotlight, we focus on the role of HDTFs during embryogenesis, where they were first characterized.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    适当的组蛋白修饰作为新皮质区域和层中神经元身份的基本细胞命运调节剂出现。在这里,我们显示NSD1,组蛋白H3(H3K36me2)的二甲基化赖氨酸36的甲基转移酶,控制大脑皮层的区域和层身份。Nsd1消融的新皮质显示所有四个主要功能区的面积偏移和皮质-丘脑-皮质投射的异常布线。Nsd1条件性敲除小鼠表现出空间记忆缺陷,运动学习,协调,类似于携带NSD1突变的Sotos综合征患者。在Nsd1丢失时,浅层锥体神经元(PNs)逐渐错误表达深层PNs的标记,PN在形态和电生理上都不成熟。有丝分裂后PNs中Nsd1的丢失导致H3K36me2的全基因组丢失和DNA甲基化的重新分布,这说明了新皮质层说明符的表达减少,但非神经基因的异位表达。一起,NSD1介导的H3K36me2是建立和维持区域和层特异性新皮层身份所必需的。
    Appropriate histone modifications emerge as essential cell fate regulators of neuronal identities across neocortical areas and layers. Here we showed that NSD1, the methyltransferase for di-methylated lysine 36 of histone H3 (H3K36me2), controls both area and layer identities of the neocortex. Nsd1-ablated neocortex showed an area shift of all four primary functional regions and aberrant wiring of cortico-thalamic-cortical projections. Nsd1 conditional knockout mice displayed defects in spatial memory, motor learning, and coordination, resembling patients with the Sotos syndrome carrying NSD1 mutations. On Nsd1 loss, superficial-layer pyramidal neurons (PNs) progressively mis-expressed markers for deep-layer PNs, and PNs remained immature both morphologically and electrophysiologically. Loss of Nsd1 in postmitotic PNs causes genome-wide loss of H3K36me2 and re-distribution of DNA methylation, which accounts for diminished expression of neocortical layer specifiers but ectopic expression of non-neural genes. Together, H3K36me2 mediated by NSD1 is required for the establishment and maintenance of region- and layer-specific neocortical identities.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    神经元非常长寿,必须保持其功能特征的非分裂细胞(例如,电性能,化学信号)用于延长的时间-在人类中几十年。神经元如何完成这一令人难以置信的壮举还知之甚少。这里,我们回顾了最近的进展,主要在线虫C.线虫中,增强了我们对使有丝分裂后神经元在不同生命阶段维持其功能的分子机制的理解。我们从“末端选择器”开始-建立和维持神经元身份所必需的转录因子。我们重点介绍了五个终端选择器的新发现(CHE-1[玻璃],UNC-3[Collier/Ebf1-4],LIN-39[Scr/Dfd/Hox4-5],UNC-86[Acj6/Brn3a-c],来自不同转录因子家族的AST-1[Etv1/ER81])(ZNF,COE,HOX,POU,ETS)。我们比较了这些因子在C.elegans的特定神经元类型中的功能及其在其他无脊椎动物中的直系同源物的作用(D.黑腹)和脊椎动物(M.musculus)系统,突出显著的功能保护。最后,我们反思最近的发现涉及染色质修饰蛋白,如组蛋白甲基转移酶和Polycomb蛋白,在神经元末端身份的控制中。总之,这些关于转录因子和染色质修饰剂的新研究不仅揭示了神经元身份维持的基本问题,但也概述了可能在其他长寿命中运作的基因调控机制原理,有丝分裂后的细胞类型。
    Neurons are remarkably long-lived, non-dividing cells that must maintain their functional features (e.g., electrical properties, chemical signaling) for extended periods of time - decades in humans. How neurons accomplish this incredible feat is poorly understood. Here, we review recent advances, primarily in the nematode C. elegans, that have enhanced our understanding of the molecular mechanisms that enable post-mitotic neurons to maintain their functionality across different life stages. We begin with \"terminal selectors\" - transcription factors necessary for the establishment and maintenance of neuronal identity. We highlight new findings on five terminal selectors (CHE-1 [Glass], UNC-3 [Collier/Ebf1-4], LIN-39 [Scr/Dfd/Hox4-5], UNC-86 [Acj6/Brn3a-c], AST-1 [Etv1/ER81]) from different transcription factor families (ZNF, COE, HOX, POU, ETS). We compare the functions of these factors in specific neuron types of C. elegans with the actions of their orthologs in other invertebrate (D. melanogaster) and vertebrate (M. musculus) systems, highlighting remarkable functional conservation. Finally, we reflect on recent findings implicating chromatin-modifying proteins, such as histone methyltransferases and Polycomb proteins, in the control of neuronal terminal identity. Altogether, these new studies on transcription factors and chromatin modifiers not only shed light on the fundamental problem of neuronal identity maintenance, but also outline mechanistic principles of gene regulation that may operate in other long-lived, post-mitotic cell types.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    Cajal-Retzius细胞(CRs)是大脑皮层发育的关键参与者,它们显示出独特的转录组身份。这里,我们使用scRNA-seq重建小鼠hem来源的CRs的分化轨迹,我们解开了一个完整的基因模块的瞬时表达,这个模块是以前已知的控制多毛发生的。然而,CRs不经历中心粒扩增或多重化。删除GMNC后,多毛生成的主要调节因子,CR最初是产生的,但未能达到其正常身份,导致其大量凋亡。我们进一步剖析了多群体效应基因的贡献,并将Trp73确定为关键决定因素。最后,我们使用子宫内电穿孔来证明hem祖细胞的内在能力以及Gmnc的异慢性表达阻止了CR谱系中的centriole扩增。我们的工作证明了一个完整的基因模块的共同选择,重新用于控制一个独特的过程,可能有助于新细胞身份的出现。
    Cajal-Retzius cells (CRs) are key players in cerebral cortex development, and they display a unique transcriptomic identity. Here, we use scRNA-seq to reconstruct the differentiation trajectory of mouse hem-derived CRs, and we unravel the transient expression of a complete gene module previously known to control multiciliogenesis. However, CRs do not undergo centriole amplification or multiciliation. Upon deletion of Gmnc, the master regulator of multiciliogenesis, CRs are initially produced but fail to reach their normal identity resulting in their massive apoptosis. We further dissect the contribution of multiciliation effector genes and identify Trp73 as a key determinant. Finally, we use in utero electroporation to demonstrate that the intrinsic competence of hem progenitors as well as the heterochronic expression of Gmnc prevent centriole amplification in the CR lineage. Our work exemplifies how the co-option of a complete gene module, repurposed to control a distinct process, may contribute to the emergence of novel cell identities.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    声音刺激在小鼠中由三种分子和生理上不同的感觉神经元亚型编码,称为Ia,Ib,和Ic螺旋神经节神经元(SGNS)。这里,我们显示转录因子Runx1控制鼠耳蜗中SGN亚型的组成。Runx1通过晚期胚胎发生富含Ib/Ic前体。从胚胎SGN中丢失了Runx1,更多的SGN采用Ia而不是Ib或Ic身份。对于与神经元功能相关的基因,这种转换比与连接相关的基因更完整。因此,Ib/Ic位置的突触获得Ia属性。在Runx1CKO小鼠中,超阈值SGN对声音的反应得到增强,证实了具有Ia样功能特性的神经元的扩增。出生后的Runx1删除也将Ib/IcSGN重定向到Ia身份,表明SGN身份在出生后是可塑的。总之,这些发现表明,正常听觉刺激编码所必需的多种神经元身份是分层出现的,并且在出生后发育过程中仍然具有延展性。
    Sound stimulus is encoded in mice by three molecularly and physiologically diverse subtypes of sensory neurons, called Ia, Ib, and Ic spiral ganglion neurons (SGNs). Here, we show that the transcription factor Runx1 controls SGN subtype composition in the murine cochlea. Runx1 is enriched in Ib/Ic precursors by late embryogenesis. Upon the loss of Runx1 from embryonic SGNs, more SGNs take on Ia rather than Ib or Ic identities. This conversion was more complete for genes linked to neuronal function than to connectivity. Accordingly, synapses in the Ib/Ic location acquired Ia properties. Suprathreshold SGN responses to sound were enhanced in Runx1CKO mice, confirming the expansion of neurons with Ia-like functional properties. Runx1 deletion after birth also redirected Ib/Ic SGNs toward Ia identity, indicating that SGN identities are plastic postnatally. Altogether, these findings show that diverse neuronal identities essential for normal auditory stimulus coding arise hierarchically and remain malleable during postnatal development.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    Cajal-Retzius细胞(CR)是发育中的大脑皮层的瞬时神经元类型。多年来,它们已被证明或提议在新皮质和海马形态发生中起重要作用,电路形成,大脑进化和人类病理学。因为它们的寿命很短,CR被描绘成一种纯粹的发育细胞类型,其产生和积极消除都是正确的大脑发育所必需的。在这次审查中,我们提出了一些发现,使我们更好地了解这种非常特殊的细胞类型的同一性和多样性,并提出了一个应该被认为是Cajal-Retzius细胞的统一定义,尤其是与非哺乳动物物种或类器官一起工作时。此外,我们重点介绍了一系列最近的研究,这些研究指出了CR在功能性和功能失调的皮质网络组装中的重要性.
    Cajal-Retzius cells (CRs) are a transient neuronal type of the developing cerebral cortex. Over the years, they have been shown or proposed to play important functions in neocortical and hippocampal morphogenesis, circuit formation, brain evolution and human pathology. Because of their short lifespan, CRs have been pictured as a purely developmental cell type, whose production and active elimination are both required for correct brain development. In this review, we present some of the findings that allow us to better appreciate the identity and diversity of this very special cell type, and propose a unified definition of what should be considered a Cajal-Retzius cell, especially when working with non-mammalian species or organoids. In addition, we highlight a flurry of recent studies pointing to the importance of CRs in the assembly of functional and dysfunctional cortical networks.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    背景:脊髓小脑共济失调7型(SCA7)是一种主要影响小脑和视网膜的神经退行性疾病。SCA7是由ATXN7蛋白中的聚谷氨酰胺扩增引起的,转录共激活子SAGA的一个亚基,它将组蛋白H3乙酰化以在活性基因的DNA调节元件上沉积窄的H3K9ac标记。有缺陷的组蛋白乙酰化已被认为是SCA7小鼠模型中基因失调的可能原因。然而,全基因组水平乙酰化缺陷的形貌及其与基因表达变化的关系仍有待确定。
    方法:我们进行了深度RNA测序和染色质免疫沉淀与高通量测序相结合,以检查基因失调和活性转录标记改变之间的全基因组相关性。例如与SAGA相关的H3K9ac,CBP相关的H3K27ac和RNA聚合酶II(RNAPII),在SCA7小鼠视网膜病变模型中。
    结果:我们的分析表明,SCA7视网膜中大多数基因启动子的活性转录标记减少,而有限数量的基因显示表达变化。我们发现SCA7视网膜病变是由数百个高度表达的基因优先下调引起的,这些基因定义了成熟光感受器的形态和生理特性。我们进一步发现,这些感光基因具有跨越整个基因体的异常宽的H3K9ac谱,并且具有较低的RNAPII暂停。这个广泛的H3K9ac签名与描绘超演者的其他特征同时出现,包括广泛的H3K27ac,光感受器特异性转录因子的结合位点和增强子相关的非编码RNA(eRNA)的表达。在SCA7视网膜中,下调的感光基因显示H3K9和H3K27乙酰化和eRNA表达减少以及RNAPII暂停增加,表明与超常癌变相关的特征发生了改变。
    结论:因此,我们的研究提供了证据,表明细胞类型特异性基因高表达的独特表观遗传构型在SCA7中优先受损,导致成熟光感受器身份特征的维持缺陷。我们的结果还表明,连续SAGA驱动的乙酰化在保留有丝分裂后神经元身份中起作用。
    BACKGROUND: Spinocerebellar ataxia type 7 (SCA7) is a neurodegenerative disorder that primarily affects the cerebellum and retina. SCA7 is caused by a polyglutamine expansion in the ATXN7 protein, a subunit of the transcriptional coactivator SAGA that acetylates histone H3 to deposit narrow H3K9ac mark at DNA regulatory elements of active genes. Defective histone acetylation has been presented as a possible cause for gene deregulation in SCA7 mouse models. However, the topography of acetylation defects at the whole genome level and its relationship to changes in gene expression remain to be determined.
    METHODS: We performed deep RNA-sequencing and chromatin immunoprecipitation coupled to high-throughput sequencing to examine the genome-wide correlation between gene deregulation and alteration of the active transcription marks, e.g. SAGA-related H3K9ac, CBP-related H3K27ac and RNA polymerase II (RNAPII), in a SCA7 mouse retinopathy model.
    RESULTS: Our analyses revealed that active transcription marks are reduced at most gene promoters in SCA7 retina, while a limited number of genes show changes in expression. We found that SCA7 retinopathy is caused by preferential downregulation of hundreds of highly expressed genes that define morphological and physiological identities of mature photoreceptors. We further uncovered that these photoreceptor genes harbor unusually broad H3K9ac profiles spanning the entire gene bodies and have a low RNAPII pausing. This broad H3K9ac signature co-occurs with other features that delineate superenhancers, including broad H3K27ac, binding sites for photoreceptor specific transcription factors and expression of enhancer-related non-coding RNAs (eRNAs). In SCA7 retina, downregulated photoreceptor genes show decreased H3K9 and H3K27 acetylation and eRNA expression as well as increased RNAPII pausing, suggesting that superenhancer-related features are altered.
    CONCLUSIONS: Our study thus provides evidence that distinctive epigenetic configurations underlying high expression of cell-type specific genes are preferentially impaired in SCA7, resulting in a defect in the maintenance of identity features of mature photoreceptors. Our results also suggest that continuous SAGA-driven acetylation plays a role in preserving post-mitotic neuronal identity.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    背景:神经元功能的一个重要决定因素是其神经递质表型。我们先前确定了斑马鱼社会定向行为所需的胆碱能神经元的定义亚群。
    结果:我们对这些神经元进行了转录分析,发现它们能够合成乙酰胆碱和GABA。我们还建立了一组转录因子和神经递质标记,可用作“转录组指纹”来识别另一种脊椎动物中的同源神经元群体。
    结论:我们的结果表明,这种转录组指纹和它定义的胆碱能-GABA能神经元亚型在进化上是保守的。
    BACKGROUND: An essential determinant of a neuron\'s functionality is its neurotransmitter phenotype. We previously identified a defined subpopulation of cholinergic neurons required for social orienting behavior in zebrafish.
    RESULTS: We transcriptionally profiled these neurons and discovered that they are capable of synthesizing both acetylcholine and GABA. We also established a constellation of transcription factors and neurotransmitter markers that can be used as a \"transcriptomic fingerprint\" to recognize a homologous neuronal population in another vertebrate.
    CONCLUSIONS: Our results suggest that this transcriptomic fingerprint and the cholinergic-GABAergic neuronal subtype that it defines are evolutionarily conserved.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    将神经元分类为不同类型揭示了反映神经元细胞类型之间相似性程度的分层分类关系。在这种分类的基础上是神经元细胞,它们彼此非常相似,但在少量的可再现和选择特征上有所不同。如何是非常相似的神经元类的成员,共享许多特征指示多样化为不同的子类?我们在这里表明,秀丽隐杆线虫IL2感觉神经元类的六个非常相似的成员,它们都是由homebox终端选择器指定的,UNC-86/BRN3,分为两个细微不同的子类,背腹侧亚类和侧侧亚类,通过正弦oculis/SIX同源盒基因unc-39的拨动开关样动作。unc-39仅在外侧IL2神经元中表达,和丢失的unc-39导致横向向背腹类的同源转换;相反,异位的unc-39表达将背腹亚类转换为横向亚类。因此,终端选择器同源盒基因控制类和子类特异性特征,而从属同源异型盒基因决定了类特异性同源异型盒基因激活亚型特异性靶基因的能力。我们发现类似的调节机制在不同类别的六个运动神经元中起作用。我们的发现强调了同源异型盒基因在神经元身份控制中的重要性,并引起了人们对同源异型身份转换的猜测,这是大脑中细胞类型进化过程中进化新颖性的潜在驱动因素。
    The classification of neurons into distinct types reveals hierarchical taxonomic relationships that reflect the extent of similarity between neuronal cell types. At the base of such taxonomies are neuronal cells that are very similar to one another but differ in a small number of reproducible and select features. How are very similar members of a neuron class that share many features instructed to diversify into distinct subclasses? We show here that the six very similar members of the Caenorhabditis elegans IL2 sensory neuron class, which are all specified by a homeobox terminal selector, unc-86/BRN3, differentiate into two subtly distinct subclasses, a dorsoventral subclass and a lateral subclass, by the toggle switch-like action of the sine oculis/SIX homeobox gene unc-39. unc-39 is expressed only in the lateral IL2 neurons, and loss of unc-39 leads to a homeotic transformation of the lateral into the dorsoventral class; conversely, ectopic unc-39 expression converts the dorsoventral subclass into the lateral subclass. Hence, a terminal selector homeobox gene controls both class- as well as subclass-specific features, while a subordinate homeobox gene determines the ability of the class-specific homeobox gene to activate subtype-specific target genes. We find a similar regulatory mechanism operating in a distinct class of six motor neurons. Our findings underscore the importance of homeobox genes in neuronal identity control and invite speculations about homeotic identity transformations as potential drivers of evolutionary novelty during cell-type evolution in the brain.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    组蛋白变体,它可以在S期之外表达,并且独立地沉积DNA合成,在有丝分裂后细胞中提供长期组蛋白替代,包括神经元。除了补充,组蛋白变体还通过调节染色质状态或使核小体周转在基因调控中发挥积极作用。这里,我们揭示了组蛋白H3变异体H3.3在神经元发育中的关键作用。我们发现新生皮质兴奋性神经元,仅具有刚刚完成的经典H3.1和H3.2的复制偶联沉积,在有丝分裂后立即大量积累H3.3。H3.3编码基因H3f3a和H3f3b从新的有丝分裂后神经元中的缺失消除了H3.3的积累,显著改变组蛋白翻译后修饰景观,并对神经元转录组的建立造成广泛的破坏。这些变化与神经元身份和轴突投射中的发育表型一致。因此,预先存在,复制依赖性组蛋白不足以建立神经元染色质和转录组;需要从头H3.3。1)循环神经祖细胞中H3f3a和H3f3b的阶段依赖性缺失,2)神经元立即有丝分裂后,或3)几天后,揭示了有丝分裂后的第一天是从头H3.3的关键窗口。在这个发育窗口内积累H3.3之后,H3f3a和H3f3b的共缺失不会导致H3.3立即丢失,但在几个月内导致进行性H3.3耗竭,而没有广泛的转录破坏或细胞表型。因此,我们的研究揭示了从头H3.3在建立神经元染色质中的关键发育作用,转录组,身份,有丝分裂后立即连接,这与它在神经元寿命中维持总组蛋白H3水平的作用不同。
    Histone variants, which can be expressed outside of S-phase and deposited DNA synthesis-independently, provide long-term histone replacement in postmitotic cells, including neurons. Beyond replenishment, histone variants also play active roles in gene regulation by modulating chromatin states or enabling nucleosome turnover. Here, we uncover crucial roles for the histone H3 variant H3.3 in neuronal development. We find that newborn cortical excitatory neurons, which have only just completed replication-coupled deposition of canonical H3.1 and H3.2, substantially accumulate H3.3 immediately postmitosis. Codeletion of H3.3-encoding genes H3f3a and H3f3b from newly postmitotic neurons abrogates H3.3 accumulation, markedly alters the histone posttranslational modification landscape, and causes widespread disruptions to the establishment of the neuronal transcriptome. These changes coincide with developmental phenotypes in neuronal identities and axon projections. Thus, preexisting, replication-dependent histones are insufficient for establishing neuronal chromatin and transcriptome; de novo H3.3 is required. Stage-dependent deletion of H3f3a and H3f3b from 1) cycling neural progenitor cells, 2) neurons immediately postmitosis, or 3) several days later, reveals the first postmitotic days to be a critical window for de novo H3.3. After H3.3 accumulation within this developmental window, codeletion of H3f3a and H3f3b does not lead to immediate H3.3 loss, but causes progressive H3.3 depletion over several months without widespread transcriptional disruptions or cellular phenotypes. Our study thus uncovers key developmental roles for de novo H3.3 in establishing neuronal chromatin, transcriptome, identity, and connectivity immediately postmitosis that are distinct from its role in maintaining total histone H3 levels over the neuronal lifespan.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号