Nanovesicle

纳米囊泡
  • 文章类型: Journal Article
    肿瘤细胞的抗原自我呈递不足和树突状细胞(DC)的无效抗原交叉呈递导致免疫识别和激活减弱。导致对免疫疗法的抵抗。在这里,我们通过利用由类囊体(TK)/血小板(PLT)膜和包封DNA甲基转移酶抑制剂zebularine(Zeb)和超声增敏剂血卟啉单甲醚(HMME)的脂质体组成的混合纳米囊泡,提出了一种可超声激活的原位疫苗.局部暴露于超声波后,产生活性氧(ROS)并诱导有效载荷的顺序释放。Zeb可以有效抑制肿瘤DNA甲基化,促进主要组织相容性复合物I类(MHC-I)分子介导的抗原自我呈递,以提高免疫识别。同时,TK膜上的过氧化氢酶可以将肿瘤中过表达的H2O2分解为O2,促进ROS的生成和肿瘤细胞的破坏,导致原位抗原释放和DC交叉呈递肿瘤抗原。这种原位疫苗同时促进抗原自我呈递和交叉呈递,从而提高抗肿瘤免疫力以克服抵抗力。
    Insufficient antigen self-presentation of tumor cells and ineffective antigen cross-presentation by dendritic cells (DCs) contribute to diminished immune recognition and activation, which cause resistance to immunotherapies. Herein, we present an ultrasound-activatable in situ vaccine by utilizing a hybrid nanovesicle composed of a thylakoid (TK)/platelet (PLT) membrane and a liposome encapsulating DNA methyltransferase inhibitor zebularine (Zeb) and sonosensitizer hematoporphyrin monomethyl ether (HMME). Upon local exposure to ultrasound, reactive oxygen species (ROS) are generated and induce the sequential release of the payloads. Zeb can efficiently inhibit tumor DNA hypermethylation, promoting major histocompatibility complex class I (MHC-I) molecules-mediated antigen self-presentation to improve immune recognition. Meanwhile, the catalase on the TK membrane can decompose the tumoral overexpressed H2O2 into O2, which boosts the generation of ROS and the destruction of tumor cells, resulting in the in situ antigen release and cross-presentation of tumor antigens by DCs. This in situ vaccine simultaneously promotes antigen self-presentation and cross-presentation, resulting in heightened antitumor immunity to overcome resistance.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Editorial
    暂无摘要。
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    尽管生物大分子是有前途的胞浆药物,引起了极大的关注,主要障碍是细胞膜阻碍入口和内体截留诱导生物大分子降解。如何避免这些限制以实现直接胞质递送仍然是一个挑战。这里,我们制备了寡精氨酸修饰的脂质以组装用于生物大分子递送的纳米囊泡,包括mRNA(mRNA)和可以通过亚胞吞介导的膜融合直接递送到树突状细胞的细胞质中的蛋白质。我们将这种膜融合脂质纳米囊命名为MF-LNV。作为纳米疫苗的负载mRNA的MF-LNV显示出有效的抗原表达以引发用于癌症治疗的稳健免疫应答。更重要的是,负载抗原蛋白的MF-LNV作为纳米疫苗通过正常摄取途径比脂质纳米颗粒引起更强的CD8+T细胞特异性应答。该MF-LNV代表了用于生物大分子的细胞内递送的更新策略。
    Although biomacromolecules are promising cytosolic drugs which have attracted tremendous attention, the major obstacles were the cellular membrane hindering the entrance and the endosome entrapment inducing biomacromolecule degradation. How to avoid those limitations to realize directly cytosolic delivery was still a challenge. Here, we prepared oligoarginine modified lipid to assemble a nanovesicle for biomacromolecules delivery, including mRNA (mRNA) and proteins which could be directly delivered into the cytoplasm of dendritic cells through subendocytosis-mediated membrane fusion. We named this membrane fusion lipid nanovesicle as MF-LNV. The mRNA loaded MF-LNV as nanovaccines showed efficient antigen expression to elicit robust immuno responses for cancer therapy. What\'s more, the antigen protein loaded MF-LNV as nanovaccines elicits much stronger CD8+ T cell specific responses than lipid nanoparticles through normal uptake pathways. This MF-LNV represented a refreshing strategy for intracellular delivery of the biomacromolecule.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    囊泡,用超薄壁包围体积的微观单元,在生物材料中无处不在。然而,创造无机金属基人造产品仍然是一个巨大的挑战。这里,受到生物囊泡形成的启发,我们提出了一种新颖的仿生策略,将超薄纳米片卷曲成纳米囊泡,这是由界面应变驱动的。受到最初形成的衬底Rh层和随后形成的RhRu覆盖层之间的界面应变的影响,纳米片开始变形以释放一定量的应变。密度泛函理论(DFT)计算表明,Ru原子使纳米片的卷曲在热力学应用中更有利。由于独特的囊泡结构,RhRu纳米囊泡/C表现出优异的氢氧化反应(HOR)活性和稳定性,实验和DFT计算都证明了这一点。具体来说,RhRu纳米囊泡/C的HOR质量活性为7.52Amg(RhRu)-1,在旋转圆盘电极(RDE)水平的过电位为50mV;这是商业Pt/C(0.31mAmgPt-1)的24.19倍。此外,具有RhRu纳米囊泡/C的氢氧化物交换膜燃料电池(HEMFC)在H2-O2条件下显示出1.62Wcm-2的峰值功率密度,比商业Pt/C(1.18Wcm-2)好得多。这项工作创造了一种新的仿生策略来合成无机纳米材料,为设计催化反应器铺平了道路。
    Vesicle, a microscopic unit that encloses a volume with an ultrathin wall, is ubiquitous in biomaterials. However, it remains a huge challenge to create its inorganic metal-based artificial counterparts. Here, inspired by the formation of biological vesicles, we proposed a novel biomimetic strategy of curling the ultrathin nanosheets into nanovesicles, which was driven by the interfacial strain. Trapped by the interfacial strain between the initially formed substrate Rh layer and subsequently formed RhRu overlayer, the nanosheet begins to deform in order to release a certain amount of strain. Density functional theory (DFT) calculations reveal that the Ru atoms make the curling of nanosheets more favorable in thermodynamics applications. Owing to the unique vesicular structure, the RhRu nanovesicles/C displays excellent hydrogen oxidation reaction (HOR) activity and stability, which has been proven by both experiments and DFT calculations. Specifically, the HOR mass activity of RhRu nanovesicles/C are 7.52 A mg(Rh+Ru)-1 at an overpotential of 50 mV at the rotating disk electrode (RDE) level; this is 24.19 times that of commercial Pt/C (0.31 mA mgPt-1). Moreover, the hydroxide exchange membrane fuel cell (HEMFC) with RhRu nanovesicles/C displays a peak power density of 1.62 W cm-2 in the H2-O2 condition, much better than that of commercial Pt/C (1.18 W cm-2). This work creates a new biomimetic strategy to synthesize inorganic nanomaterials, paving a pathway for designing catalytic reactors.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    对胰腺导管腺癌(PDAC)的临床治疗仍然存在难以察觉的检查和治疗效果不佳的问题。目前,尽管5-氟尿嘧啶(5-FU),作为临床一线FOLFIRINOX化疗药物,取得了显著的治疗效果。然而,这些不可避免的因素,如低溶解度,缺乏生物特异性,容易诱导免疫抑制环境的形成,严重限制了他们在PDAC的治疗。作为许多肿瘤细胞的重要能量来源,色氨酸(Trp),容易被吲哚胺2,3-双加氧酶1(IDO1)降解为犬尿氨酸(Kyn),激活Kyn-AHR轴以形成促进肿瘤生长和转移的特殊抑制性免疫微环境。然而,我们的研究发现,5-FU可以诱导有效的免疫原性细胞死亡(ICD),通过激活免疫系统进一步治疗肿瘤,而干扰素-γ(IFN-γ)的分泌重新诱导Kyn-AHR轴的激活,导致治疗效率低下。因此,金属基质蛋白酶-2(MMP-2)和内源性GSH双响应脂质体基纳米囊泡,与5-FU(抗癌药物)和NLG919(IDO1抑制剂)共负载,已建成(命名为ENP919@5-FU)。多功能ENP919@5-FU可有效重塑肿瘤免疫抑制微环境,增强化疗疗效,从而有效抑制癌症生长。机械上,高表达MMP-2的PDAC将通过在纳米囊泡表面上脱落PEG推动制备的纳米囊泡停留在肿瘤区域,有效增强肿瘤的摄取。随后,通过高内源性GSH切割含有S-S键的纳米囊泡,导致5-FU和NLG919的持续释放,从而使循环化学免疫疗法能够有效地引起肿瘤消融。此外,ENP919@5-FU联合PD-L1抗体(αPD-L1)对腹腔转移的PDAC模型具有协同抗肿瘤作用。总的来说,ENP919@5-FU纳米囊泡,作为PDAC治疗策略,通过重塑肿瘤微环境循环肿瘤化学免疫疗法扩增显示出优异的抗肿瘤疗效,在精准医学方法中具有很好的潜力。
    Imperceptible examination and unideal treatment effect are still intractable difficulties for the clinical treatment of pancreatic ductal adenocarcinoma (PDAC). At present, despite 5-fluorouracil (5-FU), as a clinical first-line FOLFIRINOX chemo-drug, has achieved significant therapeutic effects. Nevertheless, these unavoidable factors such as low solubility, lack of biological specificity and easy to induce immunosuppressive surroundings formation, severely limit their treatment in PDAC. As an important source of energy for many tumor cells, tryptophan (Trp), is easily degraded to kynurenine (Kyn) by indolamine 2,3- dioxygenase 1 (IDO1), which activates the axis of Kyn-AHR to form special suppressive immune microenvironment that promotes tumor growth and metastasis. However, our research findings that 5-FU can induce effectively immunogenic cell death (ICD) to further treat tumor by activating immune systems, while the secretion of interferon-γ (IFN-γ) re-induce the Kyn-AHR axis activation, leading to poor treatment efficiency. Therefore, a metal matrix protease-2 (MMP-2) and endogenous GSH dual-responsive liposomal-based nanovesicle, co-loading with 5-FU (anti-cancer drug) and NLG919 (IDO1 inhibitor), was constructed (named as ENP919@5-FU). The multifunctional ENP919@5-FU can effectively reshape the tumor immunosuppression microenvironment to enhance the effect of chemoimmunotherapy, thereby effectively inhibiting cancer growth. Mechanistically, PDAC with high expression of MMP-2 will propel the as-prepared nanovesicle to dwell in tumor region via shedding PEG on the nanovesicle surface, effectively enhancing tumor uptake. Subsequently, the S-S bond containing nanovesicle was cut via high endogenous GSH, leading to the continued release of 5-FU and NLG919, thereby enabling circulating chemoimmunotherapy to effectively cause tumor ablation. Moreover, the combination of ENP919@5-FU and PD-L1 antibody (αPD-L1) showed a synergistic anti-tumor effect on the PDAC model with abdominal cavity metastasis. Collectively, ENP919@5-FU nanovesicle, as a PDAC treatment strategy, showed excellent antitumor efficacy by remodeling tumor microenvironment to circulate tumor chemoimmunotherapy amplification, which has promising potential in a precision medicine approach.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    放化疗组合的实施在临床实践中获得了巨大的势头。然而,这种模式的全部效用通常受到化疗和放疗不一致的作用节奏的限制。这里,我们开发了一种基于金纳米粒子的辐射响应纳米囊泡系统,负载顺铂和维利帕里布,表示为CV-AuNVs,以时空可控的药物释放方式增强同步放化效应。照射后,•OH的原位生成诱导聚苯硫醚从疏水到亲水的氧化,导致纳米囊泡的崩解和包埋的顺铂和Veliparib(PARP抑制剂)的快速释放。顺铂诱导的DNA损伤和维利帕尼介导的DNA修复机制受损协同引发了有效的促凋亡作用。体内研究表明,在A549肺癌模型中,一次剂量注射CV-AuNVs和一次X射线照射范式可有效抑制肿瘤生长。这项研究提供了新的见解,从协同协同化疗和放射治疗在时空方式放化疗治疗中设计纳米医学平台。本文受版权保护。保留所有权利。
    The implementation of chemoradiation combinations has gained great momentum in clinical practices. However, the full utility of this paradigm is often restricted by the discordant tempos of action of chemotherapy and radiotherapy. Here, a gold nanoparticle-based radiation-responsive nanovesicle system loaded with cisplatin and veliparib, denoted as CV-Au NVs, is developed to augment the concurrent chemoradiation effect in a spatiotemporally controllable manner of drug release. Upon irradiation, the in situ generation of •OH induces the oxidation of polyphenylene sulfide from being hydrophobic to hydrophilic, resulting in the disintegration of the nanovesicles and the rapid release of the entrapped cisplatin and veliparib (the poly ADP-ribose polymerase (PARP) inhibitor). Cisplatin-induced DNA damage and the impairment of the DNA repair mechanism mediated by veliparib synergistically elicit potent pro-apoptotic effects. In vivo studies suggest that one-dose injection of the CV-Au NVs and one-time X-ray irradiation paradigm effectively inhibit tumor growth in the A549 lung cancer model. This study provides new insight into designing nanomedicine platforms in chemoradiation therapy from a vantage point of synergizing both chemotherapy and radiation therapy in a spatiotemporally concurrent manner.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    中枢神经系统(CNS)相关疾病在全球范围内日益被视为全球健康挑战。由于CNS屏障的存在阻碍神经疾病的管理,对于有效的诊断和治疗存在重大挑战。纳米囊泡(NVs)和磁性纳米颗粒(MNPs)的组合,称为磁性纳米囊泡(MNV),现在被认为是一种潜在的治疗选择,用于改善神经系统疾病的管理,提高靶向效率和减少副作用。
    这篇综述概述了主要的中枢神经系统疾病和限制成像/治疗剂进入中枢神经系统环境的物理障碍。讨论了对MNPs和NV的独特功能的特别关注,这使它们成为神经纳米医学的有吸引力的候选者。此外,提供了对MNV作为用于神经障碍的诊断和/或治疗目的的有希望的组合策略的更深入的理解。
    MNV的多功能性提供了克服CNS障碍的能力,可用于监测治疗的有效性。提供的见解将指导未来的研究取得更好的成果,并促进下一代的发展。中枢神经系统疾病的创新治疗。
    UNASSIGNED: Central nervous system (CNS)-related disorders are increasingly being recognized as a global health challenge worldwide. There are significant challenges for effective diagnosis and treatment due to the presence of the CNS barriers which impede the management of neurological diseases. Combination of nanovesicles (NVs) and magnetic nanoparticles (MNPs), referred to as magnetic nanovesicles (MNVs), is now well suggested as a potential theranostic option for improving the management of neurological disorders with increased targeting efficiency and minimized side effects.
    UNASSIGNED: This review provides a summary of major CNS disorders and the physical barriers limiting the access of imaging/therapeutic agents to the CNS environment. A special focus on the unique features of MNPs and NV is discussed which make them attractive candidates for neuro-nanomedicine. Furthermore, a deeper understanding of MNVs as a promising combined strategy for diagnostic and/or therapeutic purposes in neurological disorders is provided.
    UNASSIGNED: The multifunctionality of MNVs offers the ability to overcome the CNS barriers and can be used to monitor the effectiveness of treatment. The insights provided will guide future research toward better outcomes and facilitate the development of next-generation, innovative treatments for CNS disorders.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    肺泡包虫病(AE)是一种人畜共患寄生虫病,由于感染了多房棘球蚴的后生幼虫。由于目前的化疗在AE治疗中显示出有限的效率,因此迫切需要新的预防和治疗干预措施。生物工程纳米细胞膜囊泡因其独特的结构和生物相容性而被广泛用于展示天然构象表位。在这项研究中,将具有高免疫原性的多房大肠杆菌的四个T细胞和四个B细胞优势表位肽工程化到Vero细胞表面,以构建用于治疗AE的膜囊泡纳米疫苗。结果表明,纳米囊泡疫苗能高效激活树突状细胞,诱导特异性T/B细胞形成相互激活的回路,并抑制多房性大肠杆菌感染。这项研究首次提出了一种纳米疫苗策略,可以完全消除多房性大肠杆菌的负担。
    Alveolar echinococcosis (AE) is a zoonotic parasitic disease, resulting from being infected with the metacestode larvae of the tapeworm Echinococcus multilocularis (E. multilocularis). Novel prophylactic and therapeutic interventions are urgently needed since the current chemotherapy displays limited efficiency in AE treatment. Bioengineered nano cellular membrane vesicles are widely used for displaying the native conformational epitope peptides because of their unique structure and biocompatibility. In this study, four T-cells and four B-cells dominant epitope peptides of E. multilocularis with high immunogenicity were engineered into the Vero cell surface to construct a membrane vesicle nanovaccine for the treatment of AE. The results showed that the nanovesicle vaccine can efficiently activate dendritic cells, induce specific T/B cells to form a mutually activated circuit, and inhibit E. multilocularis infection. This study presents for the first time a nanovaccine strategy that can completely eliminate the burden of E. multilocularis.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    表达嵌合抗原受体(CAR)的工程化T细胞在B细胞恶性肿瘤治疗中表现出高应答率,并且具有针对各种疾病的治疗潜力。然而,CAR-T细胞复杂的离体生产过程限制了其应用。在这里,我们使用病毒模拟融合纳米囊泡(FuNVs)通过膜融合介导的CAR蛋白递送在体内产生CAR-T细胞.简而言之,使用T细胞融合剂修饰FuNVs,通过展示抗CD3单链可变片段,由麻疹病毒或呼肠孤病毒融合剂改编。FuNVs可以在体内有效地与T细胞膜融合,从而将负载的抗CD19(αCD19)CAR蛋白递送到T细胞上以产生αCD19CAR-T细胞。这些αCD19CAR-T细胞单独或与抗OX40抗体组合可以治疗B细胞淋巴瘤而不诱导细胞因子释放综合征。因此,我们的策略提供了一种在体内将T细胞改造成CAR-T细胞的新方法,并可进一步用于递送其他治疗性膜蛋白.
    Engineered T cells expressing chimeric antigen receptor (CAR) exhibit high response rates in B-cell malignancy treatments and possess therapeutic potentials against various diseases. However, the complicated ex vivo production process of CAR-T cells limits their application. Herein, we use virus-mimetic fusogenic nanovesicles (FuNVs) to produce CAR-T cells in vivo via membrane fusion-mediated CAR protein delivery. Briefly, the FuNVs are modified using T-cell fusogen, adapted from measles virus or reovirus fusogens via displaying anti-CD3 single-chain variable fragment. The FuNVs can efficiently fuse with the T-cell membrane in vivo, thereby delivering the loaded anti-CD19 (αCD19) CAR protein onto T-cells to produce αCD19 CAR-T cells. These αCD19 CAR-T cells alone or in combination with anti-OX40 antibodies can treat B-cell lymphoma without inducing cytokine release syndrome. Thus, our strategy provides a novel method for engineering T cells into CAR-T cells in vivo and can further be employed to deliver other therapeutic membrane proteins.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    开发了一种新型的基于磷脂的纳米囊泡(PBN)来封装(-)-表没食子儿茶素没食子酸酯(EGCG),绿茶中的一种主要多酚,以掩盖其苦味并扩大其在食品中的应用。PBN是使用W/O乳液转移方法形成的,并用TEM观察到的多层膜纳米囊泡结构(约200nm)。PBN对EGCG具有较高的封装效率(92.1%)。封装后EGCG的苦味显著降低至1/12。傅里叶变换红外光谱(FTIR)表明EGCG主要与PBN脂质双分子的上链/甘油/头基区域相互作用。具有耗散的石英晶体微天平(QCM-D)表明,在PBN中添加γ-环糊精可增强EGCG对磷脂的吸附,并使其具有良好的缓释作用。将EGCG封装在PBN中抑制其与粘蛋白的复合,减少苦涩。这为改善EGCG的风味提供了新的方法,有可能扩大其在食品工业中的应用。
    A novel phospholipid-based nanovesicle (PBN) was developed to encapsulate (-)-epigallocatechin gallate (EGCG), a major polyphenol in green tea, to mask its bitter taste and expand its application in food products. The PBN was formed using W/O emulsion-transfer methods and showed a multilayer membrane nanovesicle structure (around 200 nm) observed with TEM. The PBN possessed a high encapsulation efficiency (92.1%) for EGCG. The bitterness of EGCG was significantly reduced to 1/12 after encapsulation. Fourier transform infrared spectroscopy (FTIR) indicated the EGCG mainly interacted with the upper chain/glycerol/head group region of the lipid bilayerin PBN. Quartz crystal microbalance with dissipation (QCM-D) showed the addition of γ-cyclodextrin in PBN enhanced EGCG\'s adsorption with phospholipids and allowed for its good sustained release. Encapsulating EGCG in PBN inhibited its complexation with mucin, reducing bitterness and astringency. This provides a new method to improve EGCG\'s flavor, potentially expanding its application in the food industry.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号