NLR engineering

  • 文章类型: Journal Article
    作物产量和全球粮食安全不断受到植物病原体的威胁,这些病原体有可能导致流行病。传统的抗病育种可能太慢,无法抵消这些新出现的威胁,导致需要使用生物工程定制的免疫受体来重新装备植物免疫系统。设计免疫受体的努力主要集中在核苷酸结合域和富含亮氨酸的重复(NLR)免疫受体和原理证明研究上。基于对先前工程化的植物免疫系统的近乎详尽的文献检索,我们在生物工程定制的植物NLR的设计中提炼了五个新兴原则,并描述了基于其他组件的方法。这些新出现的原理预计将有助于植物免疫受体的功能理解,以及生物工程新的抗病特异性。
    Crop yield and global food security are under constant threat from plant pathogens with the potential to cause epidemics. Traditional breeding for disease resistance can be too slow to counteract these emerging threats, resulting in the need to retool the plant immune system using bioengineered made-to-order immune receptors. Efforts to engineer immune receptors have focused primarily on nucleotide-binding domain and leucine-rich repeat (NLR) immune receptors and proof-of-principles studies. Based upon a near-exhaustive literature search of previously engineered plant immune systems we distil five emerging principles in the design of bioengineered made-to-order plant NLRs and describe approaches based on other components. These emerging principles are anticipated to assist the functional understanding of plant immune receptors, as well as bioengineering novel disease resistance specificities.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    核苷酸结合和富含亮氨酸的重复受体(NLR)是细胞内植物免疫受体,可识别分泌到植物细胞中的病原体效应子。典型的NLR通常包含三个保守域,包括中央核苷酸结合(NB-ARC)域,C端富含亮氨酸的重复(LRR)和N端结构域。植物NLR的亚家族含有另外的非规范结构域,其潜在地从规范NLR结构中的效应物靶标的整合进化而来。因此,这些具有额外域的NLR被称为具有整合域的NLR(NLR-ID)。这里,我们首先总结了我们目前对效应子结合后NLR-ID激活的理解,重点关注NLR对Pik-1/Pik-2,RGA4/RGA5和RRS1/RPS4。正如最近在某些规范植物NLR中显示的那样,我们推测了它们潜在的寡聚化成抗性体。此外,我们讨论了我们对NLR-ID作用模式的日益深入的了解如何在快速进化的病原体的背景下不断为设计新的抗性特异性的工程方法提供信息.
    Nucleotide-binding and leucine-rich repeat receptors (NLRs) are intracellular plant immune receptors that recognize pathogen effectors secreted into the plant cell. Canonical NLRs typically contain three conserved domains including a central nucleotide binding (NB-ARC) domain, C-terminal leucine-rich repeats (LRRs) and an N-terminal domain. A subfamily of plant NLRs contain additional noncanonical domain(s) that have potentially evolved from the integration of the effector targets in the canonical NLR structure. These NLRs with extra domains are thus referred to as NLRs with integrated domains (NLR-IDs). Here, we first summarize our current understanding of NLR-ID activation upon effector binding, focusing on the NLR pairs Pik-1/Pik-2, RGA4/RGA5, and RRS1/RPS4. We speculate on their potential oligomerization into resistosomes as it was recently shown for certain canonical plant NLRs. Furthermore, we discuss how our growing understanding of the mode of action of NLR-ID continuously informs engineering approaches to design new resistance specificities in the context of rapidly evolving pathogens.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号