NADPH

NADPH
  • 文章类型: Journal Article
    Yarrowialipolytica是一种工业酵母,可以将废油转化为增值产品。然而,目前还不清楚这种酵母是如何代谢脂质原料的,特别是三酰基甘油(TAG)底物。本研究使用13C代谢通量分析(13C-MFA),基因组规模建模,和转录组学分析,以研究Y.LipolyticaW29与油酸的生长,甘油,和葡萄糖。转录组学数据用于指导13C-MFA模型构建并验证13C-MFA结果。然后使用13C-MFA数据来约束基因组尺度模型(GSM),预测了Y.Lipolytica通量,辅因子平衡,和萜烯产品的理论产率。这三个数据源为TAG底物的甘油和脂肪酸成分的分解代谢过程中的细胞调节提供了新的见解。以及它们的消费途径与葡萄糖分解代谢有何不同。我们发现(1)超过80%的来自油酸的乙酰辅酶A通过乙醛酸分流处理,与TCA循环相比,产生较少CO2的途径,(2)肉碱穿梭是油酸和甘油培养中胞质乙酰辅酶A池的关键调节剂,(3)氧化戊糖磷酸通路和甘露醇轮回是NADPH生成的症结门路,(4)甘露醇循环和替代氧化酶活性有助于平衡油酸β-氧化产生的过量NADH,和(5)不对称基因表达和酶使用的GSM模拟表明油酸分解代谢的代谢负担增加。
    Yarrowia lipolytica is an industrial yeast that can convert waste oil to value-added products. However, it is unclear how this yeast metabolizes lipid feedstocks, specifically triacylglycerol (TAG) substrates. This study used 13C-metabolic flux analysis (13C-MFA), genome-scale modeling, and transcriptomics analyses to investigate Y. lipolytica W29 growth with oleic acid, glycerol, and glucose. Transcriptomics data was used to guide 13C-MFA model construction and to validate the 13C-MFA results. The 13C-MFA data was then used to constrain a genome-scale model (GSM), which predicted Y. lipolytica fluxes, cofactor balance, and theoretical yields of terpene products. The three data sources provided new insights into cellular regulation during catabolism of glycerol and fatty acid components of TAG substrates, and how their consumption routes differ from glucose catabolism. We found that (1) over 80% of acetyl-CoA from oleic acid is processed through the glyoxylate shunt, a pathway that generates less CO2 compared to the TCA cycle, (2) the carnitine shuttle is a key regulator of the cytosolic acetyl-CoA pool in oleic acid and glycerol cultures, (3) the oxidative pentose phosphate pathway and mannitol cycle are key routes for NADPH generation, (4) the mannitol cycle and alternative oxidase activity help balance excess NADH generated from β-oxidation of oleic acid, and (5) asymmetrical gene expressions and GSM simulations of enzyme usage suggest an increased metabolic burden for oleic acid catabolism.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    D-1,2,4-丁三醇(BT)是一种广泛使用的精细化学品,可以通过表达异源途径并使用木糖作为底物的工程化大肠杆菌来制造。当前的研究在工程大肠杆菌中开发了葡萄糖-木糖双代谢通道系统,并使用多种策略对其进行了组合优化以促进BT生产。通过删除编码主要葡萄糖转运蛋白IICBGlc的基因ptsG并突变编码分解代谢抑制蛋白的基因crp,减轻了碳分解代谢抑制作用,从而使葡萄糖和木糖的C通量分别和同时进入各自的代谢通道,与原始MJ133K-1菌株相比,BT产量增加了33%。然后,研究了BT通道中中间体的分支代谢途径,转氨酶HisC,酮还原酶DlD,老了,和IlvC,醛缩酶MhpE和YfaU被鉴定为2-酮-3-脱氧-木甲酸酯分支代谢的酶,基因hISC的缺失使BT滴度增加了21.7%。此外,研究了BT合成与细胞内NADPH水平之间的关系,和编码转氨酶的基因pntAB的缺失导致BT产量增加18.1%。上述优化代谢网络的方法的组合使BT产量增加了47.5%,在24个深孔板中产生2.67g/L的BT。这项研究提供了对BT生物合成途径的见解,并展示了提高BT产量的有效策略。这将促进BT生物合成的产业化。
    D-1,2,4-butanetriol (BT) is a widely used fine chemical that can be manufactured by engineered Escherichia coli expressing heterologous pathways and using xylose as a substrate. The current study developed a glucose-xylose dual metabolic channel system in an engineered E. coli and Combinatorially optimized it using multiple strategies to promote BT production. The carbon catabolite repression effects were alleviated by deleting the gene ptsG that encodes the major glucose transporter IICBGlc and mutating the gene crp that encodes the catabolite repressor protein, thereby allowing C-fluxes of both glucose and xylose into their respective metabolic channels separately and simultaneously, which increased BT production by 33% compared with that of the original MJ133K-1 strain. Then, the branch metabolic pathways of intermediates in the BT channel were investigated, the transaminase HisC, the ketoreductases DlD, OLD, and IlvC, and the aldolase MhpE and YfaU were identified as the enzymes for the branched metabolism of 2-keto-3-deoxy-xylonate, deletion of the gene hisC increased BT titer by 21.7%. Furthermore, the relationship between BT synthesis and the intracellular NADPH level was examined, and deletion of the gene pntAB that encodes a transhydrogenase resulted in an 18.1% increase in BT production. The combination of the above approaches to optimize the metabolic network increased BT production by 47.5%, resulting in 2.67 g/L BT in 24 deep-well plates. This study provides insights into the BT biosynthesis pathway and demonstrates effective strategies to increase BT production, which will promote the industrialization of the biosynthesis of BT.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    线性IgA大疱性皮肤病(LABD)和疱疹样皮炎(DH)代表IgA介导的自身免疫性大疱性疾病的主要亚型。我们试图通过使用血清蛋白质组学来了解疾病的病因。我们评估了LAB中的92种器官损伤生物标志物,DH,和健康对照使用Olink高通量蛋白质组学。阳性蛋白质组血清生物标志物用于与临床特征和HLA类型相关。IgA沉积大疱性疾病的靶向蛋白质组学分析与对照显示生物标志物升高。进一步的聚类和富集分析确定了LABD和DH之间的不同簇,强调烟酰胺腺嘌呤二核苷酸磷酸(NADPH)氧化酶的参与。比较分析揭示了在LABD和DH之间具有区别的生物标志物,并且在皮肤损伤中得到验证。最后,与DEP的定性相关分析表明有六种生物标志物(NBN,NCF2,CAPG,FES,BID,和PXN)在DH患者中有较好的预后。这些发现提供了潜在的生物标志物来区分IgA沉积大疱性疾病的疾病亚型。
    Linear IgA bullous dermatosis (LABD) and dermatitis herpetiformis (DH) represent the major subtypes of IgA mediated autoimmune bullous disorders. We sought to understand the disease etiology by using serum proteomics. We assessed 92 organ damage biomarkers in LAB, DH, and healthy controls using the Olink high-throughput proteomics. The positive proteomic serum biomarkers were used to correlate with clinical features and HLA type. Targeted proteomic analysis of IgA deposition bullous disorders vs. controls showed elevated biomarkers. Further clustering and enrichment analyses identified distinct clusters between LABD and DH, highlighting the involvement of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase. Comparative analysis revealed biomarkers with distinction between LABD and DH and validated in the skin lesion. Finally, qualitative correlation analysis with DEPs suggested six biomarkers (NBN, NCF2, CAPG, FES, BID, and PXN) have better prognosis in DH patients. These findings provide potential biomarkers to differentiate the disease subtype of IgA deposition bullous disease.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    遗传编码的氧化还原生物传感器已成为具有高时空分辨率的监测细胞氧化还原过程的宝贵工具。将氧化还原活性分析物的存在与可以容易地记录的荧光信号的变化偶联。这篇综述总结了可用的荧光记录方法,并对氧化还原生物传感器进行了深入的分类,由它们响应的分析物组织。除了基于荧光蛋白的架构,这篇综述还介绍了荧光的最新进展,基于化学遗传学的氧化还原生物传感器和其他新兴的化学遗传学策略。这篇综述探讨了这些生物传感器是如何设计的,生物传感器传感机制,以及它们的实际优点和缺点。
    Genetically-encoded redox biosensors have become invaluable tools for monitoring cellular redox processes with high spatiotemporal resolution, coupling the presence of the redox-active analyte with a change in fluorescence signal that can be easily recorded. This review summarizes the available fluorescence recording methods and presents an in-depth classification of the redox biosensors, organized by the analytes they respond to. In addition to the fluorescent protein-based architectures, this review also describes the recent advances on fluorescent, chemigenetic-based redox biosensors and other emerging chemigenetic strategies. This review examines how these biosensors are designed, the biosensors sensing mechanism, and their practical advantages and disadvantages.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    二硫键凋亡是一种新的细胞死亡形式,与已建立的程序性细胞死亡途径如细胞凋亡有区别。焦亡,自噬,铁性凋亡,和下垂。该过程的特征是在葡萄糖饥饿期间,细胞中烟酰胺腺嘌呤二核苷酸磷酸(NADPH)的快速消耗和溶质载体家族7成员11(SLC7A11)的高表达,导致胱氨酸异常积累,随后在肌动蛋白细胞骨架蛋白中诱导和异常的二硫键形成,最终导致肌动蛋白网络崩溃和二硫化物下垂。这篇综述旨在总结潜在的机制,影响因素,与传统细胞死亡途径的比较,与相关疾病的关联,应用前景,和未来的研究方向。
    Disulfidptosis is a novel form of cell death that is distinguishable from established programmed cell death pathways such as apoptosis, pyroptosis, autophagy, ferroptosis, and oxeiptosis. This process is characterized by the rapid depletion of nicotinamide adenine dinucleotide phosphate (NADPH) in cells and high expression of solute carrier family 7 member 11 (SLC7A11) during glucose starvation, resulting in abnormal cystine accumulation, which subsequently induces andabnormal disulfide bond formation in actin cytoskeleton proteins, culminating in actin network collapse and disulfidptosis. This review aimed to summarize the underlying mechanisms, influencing factors, comparisons with traditional cell death pathways, associations with related diseases, application prospects, and future research directions related to disulfidptosis.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    这项研究调查了受刺激的胰腺β细胞和癌细胞之间的代谢相似性,专注于葡萄糖和谷氨酰胺代谢。应对2型糖尿病(T2D)和癌症的重大公共卫生挑战,我们的目标是加深我们对驱动胰岛素分泌和细胞增殖的机制的理解。我们对回补循环和NADPH在生物合成中的作用的分析阐明了它们在这两个过程中的重要功能。此外,我们指出,两种细胞都有一个由Nrf2信号通路介导的抗氧化反应,谷胱甘肽合成,和UCP2上调。值得注意的是,UCP2促进C4代谢物的转移,增强还原性TCA循环代谢。此外,我们观察到,刺激后β细胞的缺氧反应是短暂的,但在癌细胞中持续存在。通过综合这些见解,这项研究可能为T2D提供新的治疗靶点,强调受刺激的β细胞和癌细胞的共同代谢策略。这种比较分析不仅阐明了这些条件的代谢复杂性,而且强调了代谢途径在细胞功能和生存中的关键作用。为应对T2D和癌症挑战提供新的视角。
    This study investigates the metabolic parallels between stimulated pancreatic beta cells and cancer cells, focusing on glucose and glutamine metabolism. Addressing the significant public health challenges of Type 2 Diabetes (T2D) and cancer, we aim to deepen our understanding of the mechanisms driving insulin secretion and cellular proliferation. Our analysis of anaplerotic cycles and the role of NADPH in biosynthesis elucidates their vital functions in both processes. Additionally, we point out that both cell types share an antioxidative response mediated by the Nrf2 signaling pathway, glutathione synthesis, and UCP2 upregulation. Notably, UCP2 facilitates the transfer of C4 metabolites, enhancing reductive TCA cycle metabolism. Furthermore, we observe that hypoxic responses are transient in beta cells post-stimulation but persistent in cancer cells. By synthesizing these insights, the research may suggest novel therapeutic targets for T2D, highlighting the shared metabolic strategies of stimulated beta cells and cancer cells. This comparative analysis not only illuminates the metabolic complexity of these conditions but also emphasizes the crucial role of metabolic pathways in cell function and survival, offering fresh perspectives for tackling T2D and cancer challenges.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    戊糖磷酸途径(PPP)的氧化阶段涉及葡萄糖-6-磷酸脱氢酶(G6PDH),6-磷酸葡萄糖酸内酯酶(6PGL),和6-磷酸葡萄糖酸脱氢酶(6PGDH),对细胞内NADPH的生成至关重要,这些酶催化葡萄糖-6-磷酸(G6P)转化为核酮糖-5-磷酸(Ribu5-P)。我们以前研究过氧自由基(ROO•)介导的大肠杆菌G6PDH的氧化失活,6PGL,6PGDH然而,这些数据是从每种酶独立暴露于ROO•的实验中获得的,一种不反映生物现实的状况。在这项工作中,我们研究了当这些酶共同暴露于ROO时,如何调节NADPH的产生。将酶混合物(1:1:1比例)暴露于由100mM2,2'-偶氮双(2-甲基丙脒)二盐酸盐(AAPH)热分解产生的ROO·。NADPH在340nm处定量,和蛋白质氧化通过具有质谱检测(LC-MS)的液相色谱进行分析。使用数学模型对获得的数据进行了合理化。非氧化的酶的混合物,G6P和NADP+产生约175μMNADPH。计算模拟显示与NADPH形成相关的G6P持续下降,与实验数据一致。当酶混合物暴露于AAPH(3小时,37ºC),检测到较低水平的NADPH(~100μM),这也符合计算模拟。LC-MS分析表明Tyr发生了变化,Trp,和Met残基,但浓度低于分离的酶检测到的浓度。NADPH生成的定量表明,在氧化的初始阶段,途径活性没有改变,与G6PDH对途径氧化阶段失活的缓冲作用一致。
    The oxidative phase of the pentose phosphate pathway (PPP) involving the enzymes glucose-6-phosphate dehydrogenase (G6PDH), 6-phosphogluconolactonase (6PGL), and 6-phosphogluconate dehydrogenase (6PGDH), is critical to NADPH generation within cells, with these enzymes catalyzing the conversion of glucose-6-phosphate (G6P) into ribulose-5-phosphate (Ribu5-P). We have previously studied peroxyl radical (ROO•) mediated oxidative inactivation of E. coli G6PDH, 6PGL, and 6PGDH. However, these data were obtained from experiments where each enzyme was independently exposed to ROO•, a condition not reflecting biological reality. In this work we investigated how NADPH production is modulated when these enzymes are jointly exposed to ROO•. Enzyme mixtures (1:1:1 ratio) were exposed to ROO• produced from thermolysis of 100 mM 2,2\'-azobis(2-methylpropionamidine) dihydrochloride (AAPH). NADPH was quantified at 340 nm, and protein oxidation analyzed by liquid chromatography with mass spectrometric detection (LC-MS). The data obtained were rationalized using a mathematical model. The mixture of non-oxidized enzymes, G6P and NADP+ generated ∼175 μM NADPH. Computational simulations showed a constant decrease of G6P associated with NADPH formation, consistent with experimental data. When the enzyme mixture was exposed to AAPH (3 h, 37 ºC), lower levels of NADPH were detected (∼100 μM) which also fitted with computational simulations. LC-MS analyses indicated modifications at Tyr, Trp, and Met residues but at lower concentrations than detected for the isolated enzymes. Quantification of NADPH generation showed that the pathway activity was not altered during the initial stages of the oxidations, consistent with a buffering role of G6PDH towards inactivation of the oxidative phase of the pathway.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    我们提出了一个详细的计算β细胞模型,该模型强调了葡萄糖和葡萄糖-谷氨酰胺刺激下回补代谢的作用。该模型超越了传统的关注线粒体氧化磷酸化和ATP敏感的K+通道,突出了KATP通道附近磷酸烯醇丙酮酸主要产生ATP。它还强调了H2O2作为信号分子在葡萄糖刺激的胰岛素分泌的第一阶段的调节作用。在第二阶段,该模型强调了回补途径的关键作用,通过丙酮酸羧化酶的葡萄糖刺激和通过谷氨酸脱氢酶的谷氨酰胺激活。它特别关注NADPH和谷氨酸作为胰岛素分泌的关键增强剂的产生。模型的预测与经验数据一致,强调代谢途径的复杂相互作用,并强调葡萄糖的主要作用和谷氨酰胺在胰岛素分泌中的促进作用。通过描绘这些关键的代谢途径,该模型为糖尿病的潜在治疗靶点提供了有价值的见解.
    We propose a detailed computational beta cell model that emphasizes the role of anaplerotic metabolism under glucose and glucose-glutamine stimulation. This model goes beyond the traditional focus on mitochondrial oxidative phosphorylation and ATP-sensitive K+ channels, highlighting the predominant generation of ATP from phosphoenolpyruvate in the vicinity of KATP channels. It also underlines the modulatory role of H2O2 as a signaling molecule in the first phase of glucose-stimulated insulin secretion. In the second phase, the model emphasizes the critical role of anaplerotic pathways, activated by glucose stimulation via pyruvate carboxylase and by glutamine via glutamate dehydrogenase. It particularly focuses on the production of NADPH and glutamate as key enhancers of insulin secretion. The predictions of the model are consistent with empirical data, highlighting the complex interplay of metabolic pathways and emphasizing the primary role of glucose and the facilitating role of glutamine in insulin secretion. By delineating these crucial metabolic pathways, the model provides valuable insights into potential therapeutic targets for diabetes.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    背景:丁香酸(SA)是一种高价值的天然化合物,具有多种生物活性和广泛的应用,常见于水果中,蔬菜,和草药。SA主要通过化学合成生产,尽管如此,这些化学方法有很多缺点,例如相当大的设备要求,苛刻的反应条件,昂贵的催化剂,和许多副产品。因此,在这项研究中,通过使用工程化的全细胞设计和开发了一种用于SA生产的新型生物转化途径。
    结果:一种来自乙氧菌(DesAOMT)的O-甲基转移酶,优先催化邻苯二酚类似物的间羟基上的甲基转移反应,已确定。当S-腺苷甲硫氨酸(SAM)用作甲基供体时,表达DesAOMT的全细胞可以将没食子酸(GA)转化为SA。我们在大肠杆菌中构建了多酶级联反应,含有内源性莽草酸激酶(AroL)和分支酸裂解酶(UbiC),以及来自荧光假单胞菌的对羟基苯甲酸羟化酶突变体(PobA**),和DesAOMT;SA是通过全细胞催化由莽草酸(SHA)生物合成的。底盘细胞的代谢系统也影响了SA生物合成的效率,阻断分支酸盐代谢途径提高了SA的产量。当辅因子NADPH的供应优化时,SA的滴度达到133μM(26.2mg/L)。
    结论:总体而言,我们通过使用静止或生长的全细胞在大肠杆菌中设计了用于SA生物合成的多酶级联。这项工作确定了O-甲基转移酶(DesAOMT),可以催化GA的甲基化产生SA。包含在工程大肠杆菌中表达的四种酶的多酶级联,用于从SHA合成SA。菌株的代谢系统和生物转化条件影响催化效率。本研究为SA的生物合成提供了一条新的绿色路线。
    BACKGROUND: Syringic acid (SA) is a high-value natural compound with diverse biological activities and wide applications, commonly found in fruits, vegetables, and herbs. SA is primarily produced through chemical synthesis, nonetheless, these chemical methods have many drawbacks, such as considerable equipment requirements, harsh reaction conditions, expensive catalysts, and numerous by-products. Therefore, in this study, a novel biotransformation route for SA production was designed and developed by using engineered whole cells.
    RESULTS: An O-methyltransferase from Desulfuromonas acetoxidans (DesAOMT), which preferentially catalyzes a methyl transfer reaction on the meta-hydroxyl group of catechol analogues, was identified. The whole cells expressing DesAOMT can transform gallic acid (GA) into SA when S-adenosyl methionine (SAM) is used as a methyl donor. We constructed a multi-enzyme cascade reaction in Escherichia coli, containing an endogenous shikimate kinase (AroL) and a chorismate lyase (UbiC), along with a p-hydroxybenzoate hydroxylase mutant (PobA**) from Pseudomonas fluorescens, and DesAOMT; SA was biosynthesized from shikimic acid (SHA) by using whole cells catalysis. The metabolic system of chassis cells also affected the efficiency of SA biosynthesis, blocking the chorismate metabolism pathway improved SA production. When the supply of the cofactor NADPH was optimized, the titer of SA reached 133 μM (26.2 mg/L).
    CONCLUSIONS: Overall, we designed a multi-enzyme cascade in E. coli for SA biosynthesis by using resting or growing whole cells. This work identified an O-methyltransferase (DesAOMT), which can catalyze the methylation of GA to produce SA. The multi-enzyme cascade containing four enzymes expressed in an engineered E. coli for synthesizing of SA from SHA. The metabolic system of the strain and biotransformation conditions influenced catalytic efficiency. This study provides a new green route for SA biosynthesis.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    细胞区室中吡啶核苷酸的氧化还原变化是高度动态的,它们的平衡受到各种还原和氧化反应的影响。为了获得活植物细胞中吡啶核苷酸的时空数据,典型的生化方法需要破坏细胞。迄今为止,基因编码的荧光生物传感器被认为是弥合现有技术差距的最佳选择,因为他们提供了一个快速的,准确,和实时读出。然而,现有的吡啶核苷酸基因编码的荧光生物传感器对pH变化敏感或解离速率慢。在这里,我们使用了生物传感器,这些传感器产生的读数对于NADH/NAD比率和NADPH水平的植物测量是pH稳定的。我们产生了转基因拟南芥系,这些系在CaMV35S和LAT52启动子的控制下,在整个植物的质体基质和胞质溶胶以及花粉管中表达这些生物传感器,分别。这些转基因生物传感器系使我们能够监测各种植物组织的质体和细胞质中NADH/NAD比率和NADPH水平的实时动态变化,包括花粉管,根毛,和叶肉细胞,使用各种荧光仪器。我们预计这些有价值的转基因品系可以改善植物氧化还原生物学研究。
    Redox changes of pyridine nucleotides in cellular compartments are highly dynamic and their equilibria are under the influence of various reducing and oxidizing reactions. To obtain spatiotemporal data on pyridine nucleotides in living plant cells, typical biochemical approaches require cell destruction. To date, genetically encoded fluorescent biosensors are considered to be the best option to bridge the existing technology gap, as they provide a fast, accurate, and real-time readout. However, the existing pyridine nucleotides genetically encoded fluorescent biosensors are either sensitive to pH change or slow in dissociation rate. Herein, we employed the biosensors which generate readouts that are pH stable for in planta measurement of NADH/NAD+ ratio and NADPH level. We generated transgenic Arabidopsis lines that express these biosensors in plastid stroma and cytosol of whole plants and pollen tubes under the control of CaMV 35S and LAT52 promoters, respectively. These transgenic biosensor lines allow us to monitor real-time dynamic changes in NADH/NAD+ ratio and NADPH level in the plastids and cytosol of various plant tissues, including pollen tubes, root hairs, and mesophyll cells, using a variety of fluorescent instruments. We anticipate that these valuable transgenic lines may allow improvements in plant redox biology studies.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号