Muscular Dystrophy, Duchenne

肌营养不良,Duchenne
  • 文章类型: Case Reports
    暂无摘要。
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Editorial
    暂无摘要。
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    暂无摘要。
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    杜氏肌营养不良症(DMD)是一种主要影响男性并导致肌肉力量逐渐丧失的疾病。这导致运动技能和功能流动性的恶化,这会影响各种职业的表现。患有DMD的人通常严重依赖护理人员来协助日常活动。这可能会导致照顾者的负担。进行了一个案例研究,以探索和描述由于在家庭环境中集成智能扬声器(SS)控制的物联网(IoT)设备而导致的被诊断患有DMD的年轻成年人及其护理人员的表现的潜在变化。该研究还研究了SS作为环境控制单元(ECU)的潜力,并分析了护理人员负担的变化。智能设备和SS安装在最常用的空间,即,卧室和客厅。该研究使用WebQDA软件进行内容分析,并使用MicrosoftExcel计算结构化仪器的得分。物联网辅助环境的实施补偿了以前的物理任务,导致独立表现略有增加,对护理人员的需求减少。
    Duchenne muscular dystrophy (DMD) is a disease that primarily affects males and causes a gradual loss of muscle strength. This results in a deterioration of motor skills and functional mobility, which can impact the performance of various occupations. Individuals with DMD often rely heavily on caregivers to assist with daily activities, which can lead to caregiver burden. A case study was conducted to explore and describe potential variations in the performance of a young adult diagnosed with DMD and his caregivers resulting from the integration of smart speakers (SS)-controlled Internet of Things (IoT) devices in the home environment. The study also examined the potential of SS as an environment control unit (ECU) and analysed variations in caregiver burden. Smart devices and SS were installed in the most frequently used spaces, namely, the bedroom and living room. The study employed WebQDA software to perform content analysis and Microsoft Excel to calculate the scores of the structured instruments. The implementation of the IoT-assisted environment compensated for previously physical tasks, resulting in a slight increase in independent performance and reduced demands on caregivers.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    Sarcospan(SSPN)是一种25kDa的跨膜蛋白,在许多组织的细胞表面广泛表达,包括,但不限于,骨骼肌和平滑肌的肌纤维,心肌细胞,脂肪细胞,肾上皮细胞,和神经元。SSPN是连接细胞内肌动蛋白细胞骨架与细胞外基质的肌营养不良蛋白-糖蛋白复合物(DGC)的核心成分。它还与整合素α7β1(骨骼肌中表达的主要整合素)相关。作为具有四个跨膜域的四跨膜蛋白样蛋白,SSPN充当支架以促进细胞膜上的蛋白质-蛋白质相互作用。杜氏肌营养不良症,Becker肌营养不良症,和X连锁扩张型心肌病是由肌细胞表面的肌营养不良蛋白的丢失以及伴随的整个DGC的丢失引起的,包括SSPN。SSPN过表达改善mdx小鼠模型中的Duchenne肌营养不良,这支持SSPN成为可行的治疗靶标。其他拯救研究支持SSPN作为DGC的正确组装和膜表达的生物标志物。SSPN拯救分子机制的基础研究需要针对SSPN的高度特异性和强大的抗体,临床前研究,和人类样本中的生物标志物评估。SSPN抗体的开发受到其四个跨膜结构域和有限的抗原表位的存在的挑战。为了解决有限的市售抗体带来的重大障碍,我们的目标是产生一组强大的SSPN特异性抗体,可以作为研究界的资源。我们创建了针对三个SSPN蛋白表位的抗体,包括细胞内N-和C-末端以及跨膜结构域3和4之间的大细胞外环(LEL)。我们开发了一组针对SSPNN末端肽片段的兔抗体(多抗体和单克隆抗体)。我们使用了几种测定法来显示兔抗体以高功能亲和力和特异性识别小鼠SSPN。我们开发了针对人SSPN的C末端肽和大细胞外环的小鼠单克隆抗体。这些抗体优于市售抗体,并在各种应用中胜过它们。包括免疫印迹,间接免疫荧光分析,免疫沉淀,和ELISA。这些新开发的抗体将显着提高SSPN检测的质量和易用性,用于基础和翻译研究。
    Sarcospan (SSPN) is a 25-kDa transmembrane protein that is broadly expressed at the cell surface of many tissues, including, but not limited to, the myofibers from skeletal and smooth muscles, cardiomyocytes, adipocytes, kidney epithelial cells, and neurons. SSPN is a core component of the dystrophin-glycoprotein complex (DGC) that links the intracellular actin cytoskeleton with the extracellular matrix. It is also associated with integrin α7β1, the predominant integrin expressed in skeletal muscle. As a tetraspanin-like protein with four transmembrane spanning domains, SSPN functions as a scaffold to facilitate protein-protein interactions at the cell membrane. Duchenne muscular dystrophy, Becker muscular dystrophy, and X-linked dilated cardiomyopathy are caused by the loss of dystrophin at the muscle cell surface and a concomitant loss of the entire DGC, including SSPN. SSPN overexpression ameliorates Duchenne muscular dystrophy in the mdx murine model, which supports SSPN being a viable therapeutic target. Other rescue studies support SSPN as a biomarker for the proper assembly and membrane expression of the DGC. Highly specific and robust antibodies to SSPN are needed for basic research on the molecular mechanisms of SSPN rescue, pre-clinical studies, and biomarker evaluations in human samples. The development of SSPN antibodies is challenged by the presence of its four transmembrane domains and limited antigenic epitopes. To address the significant barrier presented by limited commercially available antibodies, we aimed to generate a panel of robust SSPN-specific antibodies that can serve as a resource for the research community. We created antibodies to three SSPN protein epitopes, including the intracellular N- and C-termini as well as the large extracellular loop (LEL) between transmembrane domains 3 and 4. We developed a panel of rabbit antibodies (poly- and monoclonal) against an N-terminal peptide fragment of SSPN. We used several assays to show that the rabbit antibodies recognize mouse SSPN with a high functional affinity and specificity. We developed mouse monoclonal antibodies against the C-terminal peptide and the large extracellular loop of human SSPN. These antibodies are superior to commercially available antibodies and outperform them in various applications, including immunoblotting, indirect immunofluorescence analysis, immunoprecipitation, and an ELISA. These newly developed antibodies will significantly improve the quality and ease of SSPN detection for basic and translational research.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    骨膜素,一种多功能的90kDa蛋白质,在各种组织的纤维化发病机制中起着关键作用,包括骨骼肌.它在转化生长因子β1(Tgf-β1)信号传导途径中起作用,并在纤维化组织中上调。PeriostinC末端区域的可变剪接导致六种蛋白质编码亚型。这项研究旨在阐明包含外显子17(e17Periostin)编码的氨基酸的同工型对骨骼肌纤维化的贡献,并研究操纵外显子17剪接的治疗潜力。我们确定了e17+骨膜素同工型之间明显的结构差异,影响它们与关键纤维化蛋白的相互作用,包括Tgf-β1和整合素αV。体外小鼠成纤维细胞实验证实了TGF-β1诱导的e17骨膜素mRNA的上调,通过诱导Postn基因外显子17跳跃的反义方法减轻。随后的体内研究在D2。杜氏肌营养不良症(DMD)的mdx小鼠模型证明我们的反义治疗有效地降低了e17+骨膜素mRNA的表达,这与全长骨膜素蛋白表达和胶原蛋白积累减少相吻合。将处理的小鼠的握力恢复至野生型水平。这些结果表明e17+骨膜素同工型在骨骼肌纤维化病理中的关键作用,并突出了靶向外显子跳跃策略作为减轻纤维化相关并发症的有希望的治疗方法的潜力。
    Periostin, a multifunctional 90 kDa protein, plays a pivotal role in the pathogenesis of fibrosis across various tissues, including skeletal muscle. It operates within the transforming growth factor beta 1 (Tgf-β1) signalling pathway and is upregulated in fibrotic tissue. Alternative splicing of Periostin\'s C-terminal region leads to six protein-coding isoforms. This study aimed to elucidate the contribution of the isoforms containing the amino acids encoded by exon 17 (e17+ Periostin) to skeletal muscle fibrosis and investigate the therapeutic potential of manipulating exon 17 splicing. We identified distinct structural differences between e17+ Periostin isoforms, affecting their interaction with key fibrotic proteins, including Tgf-β1 and integrin alpha V. In vitro mouse fibroblast experimentation confirmed the TGF-β1-induced upregulation of e17+ Periostin mRNA, mitigated by an antisense approach that induces the skipping of exon 17 of the Postn gene. Subsequent in vivo studies in the D2.mdx mouse model of Duchenne muscular dystrophy (DMD) demonstrated that our antisense treatment effectively reduced e17+ Periostin mRNA expression, which coincided with reduced full-length Periostin protein expression and collagen accumulation. The grip strength of the treated mice was rescued to the wild-type level. These results suggest a pivotal role of e17+ Periostin isoforms in the fibrotic pathology of skeletal muscle and highlight the potential of targeted exon skipping strategies as a promising therapeutic approach for mitigating fibrosis-associated complications.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    杜氏肌营养不良症(DMD)是与肌肉萎缩和退化相关的X连锁进行性疾病。这种疾病是由编码肌营养不良蛋白的基因突变引起的,一种连接细胞骨架和细胞膜蛋白的蛋白质。目前的治疗方法旨在缓解疾病的症状或部分挽救肌肉功能。然而,它们不足以抑制疾病进展。近年来,研究揭示了非编码RNA(ncRNA)在调节多种疾病进展中的重要作用。ncRNAs,如micro-RNAs(miRNA),结合到它们的靶信使RNA(mRNA)以抑制翻译。了解涉及失调的miRNA的机制可以改善诊断,并为DMD患者提供新的治疗方法。这篇综述提供了关于miRNA表达改变在DMD发病机理中的作用的可用证据。我们讨论了这些分子在与肌肉生理学和DMD相关的心肌病相关的过程中的参与。
    Duchenne muscular dystrophy (DMD) is an X-linked progressive disorder associated with muscle wasting and degeneration. The disease is caused by mutations in the gene that encodes dystrophin, a protein that links the cytoskeleton with cell membrane proteins. The current treatment methods aim to relieve the symptoms of the disease or partially rescue muscle functionality. However, they are insufficient to suppress disease progression. In recent years, studies have uncovered an important role for non-coding RNAs (ncRNAs) in regulating the progression of numerous diseases. ncRNAs, such as micro-RNAs (miRNAs), bind to their target messenger RNAs (mRNAs) to suppress translation. Understanding the mechanisms involving dysregulated miRNAs can improve diagnosis and suggest novel treatment methods for patients with DMD. This review presents the available evidence on the role of altered expression of miRNAs in the pathogenesis of DMD. We discuss the involvement of these molecules in the processes associated with muscle physiology and DMD-associated cardiomyopathy.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    肠道菌群在维持肠道上皮细胞和免疫细胞的动态平衡中起着关键作用,对整个器官稳态至关重要。这些复杂关系中的功能障碍可导致炎症并有助于各种疾病的发病机理。最近的发现揭示了肠-肌肉轴的存在,揭示肠道微生物群的改变如何破坏肌肉和脂肪组织的调节机制,引发免疫介导的炎症。在Duchenne肌营养不良(DMD)的背景下,肠道通透性的改变是可能通过各种途径引发肌肉变性的分子的潜在来源。肠道细菌产生的代谢物,或者细菌本身的碎片,可能有能力从肠道迁移到血液中,并最终渗入远处的肌肉组织,加剧局部病理。这些见解突出了DMD中肌肉骨骼系统以外的其他病理途径,为营养补充剂作为潜在的辅助治疗铺平了道路。了解肠道微生物群之间复杂的相互作用,免疫系统,和肌肉健康为超越传统方法的治疗干预提供了新的视角,以有效抵消DMD的多面性。
    The gut microbiota plays a pivotal role in maintaining the dynamic balance of intestinal epithelial and immune cells, crucial for overall organ homeostasis. Dysfunctions in these intricate relationships can lead to inflammation and contribute to the pathogenesis of various diseases. Recent findings uncovered the existence of a gut-muscle axis, revealing how alterations in the gut microbiota can disrupt regulatory mechanisms in muscular and adipose tissues, triggering immune-mediated inflammation. In the context of Duchenne muscular dystrophy (DMD), alterations in intestinal permeability stand as a potential origin of molecules that could trigger muscle degeneration via various pathways. Metabolites produced by gut bacteria, or fragments of bacteria themselves, may have the ability to migrate from the gut into the bloodstream and ultimately infiltrate distant muscle tissues, exacerbating localized pathologies. These insights highlight alternative pathological pathways in DMD beyond the musculoskeletal system, paving the way for nutraceutical supplementation as a potential adjuvant therapy. Understanding the complex interplay between the gut microbiota, immune system, and muscular health offers new perspectives for therapeutic interventions beyond conventional approaches to efficiently counteract the multifaceted nature of DMD.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    DMD基因中的突变导致致命的杜氏肌营养不良(DMD)。一种有吸引力的治疗方法是利用源自诱导多能干细胞(iPSC)的肌原祖细胞的自体细胞移植。鉴于显著数量的DMD突变发生在外显子45和55之间,我们开发了基因敲入方法来校正外显子44下游的任何突变。我们将这种方法应用于两个在外显子45和51中携带突变的DMD患者特异性iPSC系,并通过蛋白质印迹和免疫荧光染色证实了校正肌管中的微型DYSTROPHIN(微型DYS)蛋白表达。将基因编辑的DMDiPSC衍生的肌原祖细胞移植到NSG/mdx4Cv小鼠中,产生了供体衍生的肌纤维,如人肌动蛋白和层A/C的双重表达所示。这些发现进一步为使用可编程核酸酶开发基于自体iPSC的肌营养不良疗法提供了概念验证。
    Mutations in the DMD gene cause fatal Duchenne Muscular Dystrophy (DMD). An attractive therapeutic approach is autologous cell transplantation utilizing myogenic progenitors derived from induced pluripotent stem cells (iPSCs). Given that a significant number of DMD mutations occur between exons 45 and 55, we developed a gene knock-in approach to correct any mutations downstream of exon 44. We applied this approach to two DMD patient-specific iPSC lines carrying mutations in exons 45 and 51 and confirmed mini-DYSTROPHIN (mini-DYS) protein expression in corrected myotubes by western blot and immunofluorescence staining. Transplantation of gene-edited DMD iPSC-derived myogenic progenitors into NSG/mdx4Cv mice produced donor-derived myofibers, as shown by the dual expression of human DYSTROPHIN and LAMIN A/C. These findings further provide proof-of-concept for the use of programmable nucleases for the development of autologous iPSC-based therapy for muscular dystrophies.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    在骨骼肌命运决定子上游起作用的基因调控网络在不同的解剖位置是不同的。尽管最近的努力,对特定肌肉群中干细胞池出现和维持的潜在事件级联的清晰理解仍未解决和辩论.这里,我们在产前用多个Cre驱动小鼠使Pitx2无效,出生后,在谱系发展过程中。我们表明,尽管存在,但该基因对于眼外肌(EOM)中肌肉干(MuSC)细胞池的规范和维持逐渐变得可有可无,与Myf5一起,Myf5是早期开发期间的主要上游监管机构。此外,与肢体相比,Pax7的组成性失活导致EOM中MuSC的损失更大。因此,我们建议在Pitx2,Myf5和Pax7之间进行中继,以维持EOM干细胞。我们还证明了EOM中的MuSCs较早采取静止状态,而四肢肌肉中的MuSCs则不会在成虫中自发增殖,然而EOM在产前和产后每个区域的Pax7+MuSCs含量显著较高。最后,而肢体MuSCs在Duchenne肌营养不良mdx小鼠模型中增殖,与对照组相比,mdx小鼠模型的EOM中存在的MuSC显着减少,它们没有增殖。总的来说,我们的研究提供了MuSC沿着身体轴的异质性的全面体内表征,并进一步了解了肌肉营养不良期间EOM的异常保留。
    Gene regulatory networks that act upstream of skeletal muscle fate determinants are distinct in different anatomical locations. Despite recent efforts, a clear understanding of the cascade of events underlying the emergence and maintenance of the stem cell pool in specific muscle groups remains unresolved and debated. Here, we invalidated Pitx2 with multiple Cre-driver mice prenatally, postnatally, and during lineage progression. We showed that this gene becomes progressively dispensable for specification and maintenance of the muscle stem (MuSC) cell pool in extraocular muscles (EOMs) despite being, together with Myf5, a major upstream regulator during early development. Moreover, constitutive inactivation of Pax7 postnatally led to a greater loss of MuSCs in the EOMs compared to the limb. Thus, we propose a relay between Pitx2, Myf5 and Pax7 for EOM stem cell maintenance. We demonstrate also that MuSCs in the EOMs adopt a quiescent state earlier that those in limb muscles and do not spontaneously proliferate in the adult, yet EOMs have a significantly higher content of Pax7+ MuSCs per area pre- and post-natally. Finally, while limb MuSCs proliferate in the mdx mouse model for Duchenne muscular dystrophy, significantly less MuSCs were present in the EOMs of the mdx mouse model compared to controls, and they were not proliferative. Overall, our study provides a comprehensive in vivo characterisation of MuSC heterogeneity along the body axis and brings further insights into the unusual sparing of EOMs during muscular dystrophy.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号