Multiscale modeling

多尺度建模
  • 文章类型: Journal Article
    仍然缺乏对HIV-1包膜(Env)蛋白如何促进融合的基本理解。HIV-1融合肽,由15到22个残基组成,是Env蛋白的gp41亚基的N末端。Further,这种肽,一个有前途的候选疫苗,通过插入和锚定到人的免疫细胞启动病毒进入靶细胞。在膜插入和锚定过程中,膜脂质重组和融合肽构象变化的影响,这可以显著影响HIV-1细胞的进入,由于实验测量的局限性,大部分仍未探索。在这项工作中,我们通过多尺度分子动力学模拟研究融合肽在免疫细胞膜模拟物中的插入。我们通过构建9-脂质不对称膜来模拟天然T细胞,以及在gp41背景下插入的几何限制。考虑到脂质混合的缓慢时间尺度,同时实现构象变化,我们实现了一个协议,在原子模拟和粗粒度模拟之间来回切换。我们的研究提供了HIV-1融合肽与T细胞膜之间相互作用的分子理解,强调融合肽的构象灵活性和局部脂质重组在HIV-1细胞进入早期事件中稳定gp41锚定到靶向宿主膜中的重要性。重要的是,我们确定了融合肽中的一个基序,该基序对于融合至关重要,可以在未来的免疫学研究中进一步操作。
    A fundamental understanding of how HIV-1 envelope (Env) protein facilitates fusion is still lacking. The HIV-1 fusion peptide, consisting of 15 to 22 residues, is the N-terminus of the gp41 subunit of the Env protein. Further, this peptide, a promising vaccine candidate, initiates viral entry into target cells by inserting and anchoring into human immune cells. The influence of membrane lipid reorganization and the conformational changes of the fusion peptide during the membrane insertion and anchoring processes, which can significantly affect HIV-1 cell entry, remains largely unexplored due to the limitations of experimental measurements. In this work, we investigate the insertion of the fusion peptide into an immune cell membrane mimic through multiscale molecular dynamics simulations. We mimic the native T-cell by constructing a 9-lipid asymmetric membrane, along with geometrical restraints accounting for insertion in the context of gp41. To account for the slow timescale of lipid mixing while enabling conformational changes, we implement a protocol to go back and forth between atomistic and coarse-grained simulations. Our study provides a molecular understanding of the interactions between the HIV-1 fusion peptide and the T-cell membrane, highlighting the importance of conformational flexibility of fusion peptides and local lipid reorganization in stabilizing the anchoring of gp41 into the targeted host membrane during the early events of HIV-1 cell entry. Importantly, we identify a motif within the fusion peptide critical for fusion that can be further manipulated in future immunological studies.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • DOI:
    文章类型: Journal Article
    组成是系统生物学的强大原理,专注于接口,互连,和分布式进程的编排。尽管大多数系统生物学模型都专注于受控条件下特定子系统的结构或动力学,组合系统生物学旨在将此类模型连接到综合多尺度模拟中。这强调了模型之间的空间——组合观点问应该通过子模型的接口暴露哪些变量?耦合模型如何跨尺度连接和转换?我们如何连接跨生物和物理研究领域的特定领域模型以推动新知识的合成?将不同数据集和子模型集成到统一多尺度模拟中的软件需要什么?如何访问由此产生的集成模型,灵活地重组成新形式,并由研究人员社区迭代地完善?这篇文章提供了组成系统生物学的关键组成部分的高级概述,包括:1)概念框架和相应的图形框架来表示接口,构图模式,和编排模式;2)标准化的组合模式,为可组合的数据类型和模型提供一致的格式,为可以灵活组装的模拟模块注册表培养强大的基础设施;3)一组基础的生物模板-细胞和分子界面的模式,可以填充详细的子模型和数据集,并旨在整合揭示细胞分子出现的知识;4)通过用户友好的界面促进科学合作,将研究人员与数据集和模型联系起来,并允许研究人员社区有效地建立细胞系统的综合多尺度模型。
    Composition is a powerful principle for systems biology, focused on the interfaces, interconnections, and orchestration of distributed processes. Whereas most systems biology models focus on the structure or dynamics of specific subsystems in controlled conditions, compositional systems biology aims to connect such models into integrative multiscale simulations. This emphasizes the space between models-a compositional perspective asks what variables should be exposed through a submodel\'s interface? How do coupled models connect and translate across scales? How can we connect domain-specific models across biological and physical research areas to drive the synthesis of new knowledge? What is required of software that integrates diverse datasets and submodels into unified multiscale simulations? How can the resulting integrative models be accessed, flexibly recombined into new forms, and iteratively refined by a community of researchers? This essay offers a high-level overview of the key components for compositional systems biology, including: 1) a conceptual framework and corresponding graphical framework to represent interfaces, composition patterns, and orchestration patterns; 2) standardized composition schemas that offer consistent formats for composable data types and models, fostering robust infrastructure for a registry of simulation modules that can be flexibly assembled; 3) a foundational set of biological templates-schemas for cellular and molecular interfaces, which can be filled with detailed submodels and datasets, and are designed to integrate knowledge that sheds light on the molecular emergence of cells; and 4) scientific collaboration facilitated by user-friendly interfaces for connecting researchers with datasets and models, and which allows a community of researchers to effectively build integrative multiscale models of cellular systems.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    软凝聚态是具有挑战性的研究由于巨大的时间和长度尺度是必要的,以准确地表示复杂的系统和捕获其基础物理。多尺度模拟对于研究具有不同时间和/或长度尺度的过程是必要的,在生物学和其他复杂系统中比比皆是。在这里,我们介绍ezAlign,用于将粗粒度分子动力学结构转换为原子表示的开源软件,允许生物分子系统的多尺度建模。ezAlignv1.1软件包可在github.com/LLNL/ezAlign上公开下载。它的基本方法是基于原子模板分子的简单比对,其次是位置约束能量最小化,这迫使原子分子采用与粗粒分子一致的构象。然后分子结合起来,溶剂化,最小化,并与位置限制相平衡。在纯POPC膜上进行了该过程的验证,并与其他常用的构建原子膜的方法进行了比较。其他示例,包括表面活性剂自组装,膜蛋白,以及更复杂的细菌和人类质膜模型,也提出了。通过提供这些例子,参数文件,代码,和一个易于遵循的配方来添加新分子,这项工作将有助于未来的多尺度建模工作。
    Soft condensed matter is challenging to study due to the vast time and length scales that are necessary to accurately represent complex systems and capture their underlying physics. Multiscale simulations are necessary to study processes that have disparate time and/or length scales, which abound throughout biology and other complex systems. Herein we present ezAlign, an open-source software for converting coarse-grained molecular dynamics structures to atomistic representation, allowing multiscale modeling of biomolecular systems. The ezAlign v1.1 software package is publicly available for download at github.com/LLNL/ezAlign. Its underlying methodology is based on a simple alignment of an atomistic template molecule, followed by position-restraint energy minimization, which forces the atomistic molecule to adopt a conformation consistent with the coarse-grained molecule. The molecules are then combined, solvated, minimized, and equilibrated with position restraints. Validation of the process was conducted on a pure POPC membrane and compared with other popular methods to construct atomistic membranes. Additional examples, including surfactant self-assembly, membrane proteins, and more complex bacterial and human plasma membrane models, are also presented. By providing these examples, parameter files, code, and an easy-to-follow recipe to add new molecules, this work will aid future multiscale modeling efforts.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    在不损害质量属性或可持续性的情况下满足食品安全要求涉及采用食品的整体观点,他们的制造过程以及他们的存储和分销实践。食品供应链的虚拟化为评估、模拟,并预测可能导致当前和未来食品安全风险的挑战和事故。食品系统虚拟化提出了几个要求:(1)一个由工具性、数字,和计算方法,以评估影响食品安全的内部和外部因素;(2)无损和实时传感方法,例如基于光谱的技术,促进绘制和跟踪食品安全和质量指标;(3)由物联网(IoT)互连支持的动态平台,以集成信息,执行在线数据分析并交换有关产品历史的信息,爆发,暴露在危险的情况下,等。;(4)基于广泛的数据集的全面和互补的数学建模技术(包括但不限于化学反应和微生物灭活和生长动力学),以使现实的模拟和预测成为可能。尽管目前在数据集成和虚拟化技术技能方面存在局限性,但要充分发挥其潜力,它越来越多地作为食品系统评估的交互式和动态工具,可以提高资源利用率和产品的合理设计,流程和物流,以增强食品安全。虚拟化提供了经济实惠且可靠的选项,可帮助利益相关者进行决策和人员培训。本章重点介绍开发和应用虚拟食物系统的定义和要求,包括数字双胞胎,以及它们在加强食品安全方面的作用和未来趋势。
    Meeting food safety requirements without jeopardizing quality attributes or sustainability involves adopting a holistic perspective of food products, their manufacturing processes and their storage and distribution practices. The virtualization of the food supply chain offers opportunities to evaluate, simulate, and predict challenges and mishaps potentially contributing to present and future food safety risks. Food systems virtualization poses several requirements: (1) a comprehensive framework composed of instrumental, digital, and computational methods to evaluate internal and external factors that impact food safety; (2) nondestructive and real-time sensing methods, such as spectroscopic-based techniques, to facilitate mapping and tracking food safety and quality indicators; (3) a dynamic platform supported by the Internet of Things (IoT) interconnectivity to integrate information, perform online data analysis and exchange information on product history, outbreaks, exposure to risky situations, etc.; and (4) comprehensive and complementary mathematical modeling techniques (including but not limited to chemical reactions and microbial inactivation and growth kinetics) based on extensive data sets to make realistic simulations and predictions possible. Despite current limitations in data integration and technical skills for virtualization to reach its full potential, its increasing adoption as an interactive and dynamic tool for food systems evaluation can improve resource utilization and rational design of products, processes and logistics for enhanced food safety. Virtualization offers affordable and reliable options to assist stakeholders in decision-making and personnel training. This chapter focuses on definitions and requirements for developing and applying virtual food systems, including digital twins, and their role and future trends in enhancing food safety.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    肺动脉高压(PH)是一种使人衰弱的疾病,其改变近端和远端肺脉管系统的结构和功能。这改变了肺动脉和静脉树中的压力-流量关系,尽管在疾病的近端和远端血流动力学之间的关系方面存在关键的知识差距。多尺度计算模型使得能够在近端和远端脉管系统中进行模拟。然而,模型输入和测量数据本质上是不确定的,需要对模型的敏感性和不确定性进行全面分析。因此,这项研究量化了空间多尺度下的模型灵敏度和输出不确定性,肺血流动力学的脉搏波传播模型。该模型包括15个近端动脉和12个近端静脉,通过双面连接,远端脉管系统的结构化树模型。我们使用多项式混沌扩展来加快灵敏度和不确定性量化分析,并为近端和远端脉管系统提供结果。我们量化了血压的不确定性,血液流速,波浪强度,墙体剪应力,和循环拉伸。后两者是内皮细胞机械转导的重要刺激物。我们的结论是,虽然我们系统中几乎所有的参数都对模型预测有一定的影响,描述微血管床密度的参数对近端和远端动脉和静脉循环中所有模拟量的影响最大。
    Pulmonary hypertension (PH) is a debilitating disease that alters the structure and function of both the proximal and distal pulmonary vasculature. This alters pressure-flow relationships in the pulmonary arterial and venous trees, though there is a critical knowledge gap in the relationships between proximal and distal hemodynamics in disease. Multiscale computational models enable simulations in both the proximal and distal vasculature. However, model inputs and measured data are inherently uncertain, requiring a full analysis of the sensitivity and uncertainty of the model. Thus, this study quantifies model sensitivity and output uncertainty in a spatially multiscale, pulse-wave propagation model of pulmonary hemodynamics. The model includes fifteen proximal arteries and twelve proximal veins, connected by a two-sided, structured tree model of the distal vasculature. We use polynomial chaos expansions to expedite sensitivity and uncertainty quantification analyses and provide results for both the proximal and distal vasculature. We quantify uncertainty in blood pressure, blood flow rate, wave intensity, wall shear stress, and cyclic stretch. The latter two are important stimuli for endothelial cell mechanotransduction. We conclude that, while nearly all the parameters in our system have some influence on model predictions, the parameters describing the density of the microvascular beds have the largest effects on all simulated quantities in both the proximal and distal arterial and venous circulations.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    CFRP混合粘结螺栓(HBB)接头结合了传统连接方法的优点,即粘合剂粘合,和螺栓连接,为了获得最佳的连接性能,使它们成为最受欢迎的连接方法。CFRPHBB接头的结构参数,包括重叠长度,螺栓孔间距,和合适的间隙关系,对连接性能有复杂的影响。为了增强关节结构的连通性能,本文建立了多尺度有限元分析模型,研究了结构参数对CFRPHBB节点结构强度的影响。再加上实验验证,该研究揭示了结构参数的变化如何影响接头的单向拉伸破坏力。在这个基础上,开发了基于深度监督学习算法的CFRPHBB接头力学性能的分析方法和逆设计方法。神经网络以前所未有的参数组合,准确有效地预测关节的性能,从而加快逆设计过程。这项研究结合了实验和多尺度有限元分析,以探索CFRPHBB接头的力学性能与其结构参数之间的未知关系。此外,利用DNN神经网络,提出了一种混合节点力学性能的快速计算方法。这些发现为复合材料及其连接结构的更广泛的应用和更复杂的设计奠定了基础。
    CFRP hybrid bonded-bolted (HBB) joints combine the advantages of traditional joining methods, namely adhesive bonding, and bolting, to achieve optimal connection performance, making them the most favored connection method. The structural parameters of CFRP HBB joints, including overlap length, bolt-hole spacing, and fit clearance relationships, have a complex impact on connection performance. To enhance the connectivity performance of joint structures, this paper develops a multiscale finite element analysis model to investigate the impact of structural parameters on the strength of CFRP HBB joint structures. Coupled with experimental validation, the study reveals how changes in structural parameters affect the unidirectional tensile failure force of the joints. Building on this, an analytical approach and inverse design methodology for the mechanical properties of CFRP HBB joints based on deep supervised learning algorithms are developed. Neural networks accurately and efficiently predict the performance of joints with unprecedented combinations of parameters, thus expediting the inverse design process. This research combines experimentation and multiscale finite element analysis to explore the unknown relationships between the mechanical properties of CFRP HBB joints and their structural parameters. Furthermore, leveraging DNN neural networks, a rapid calculation method for the mechanical properties of hybrid joints is proposed. The findings lay the groundwork for the broader application and more intricate design of composite materials and their connection structures.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    肺癌等肺部疾病会显著改变器官的机械特性,直接影响发育,programming,诊断,和疾病的治疗反应。尽管人们对肺的材料特性非常感兴趣,在肺泡下分辨率下测量完整肺的硬度是不可能的。最近,我们开发了晶体胸腔,以光学分辨率成像功能的肺,同时控制生理参数,如气压。这里,我们引入了数据驱动,在不同膨胀压力下拍摄肺部图像的多尺度网络模型,通过水晶胸腔获得,并生成相应的绝对刚度图。验证后,我们报告了健康和疾病中功能正常的肺的微观分辨率的绝对刚度图.对于健康肺和患有原发性癌症的肺的代表性图像,我们发现,虽然肺在微观尺度上表现出显著的硬度异质性,原发性肿瘤在肺的微环境中引入更大的异质性。此外,我们观察到,虽然健康的肺泡表现出75倍的应变硬化,在测量的经肺压力范围内,肿瘤的硬度增加了六倍。虽然在3cmH2O的经肺压力下,肿瘤硬度是肺硬度的1.4倍,在18cmH2O的经肺压力下,肿瘤的平均硬度几乎是周围组织的5倍。最后,我们报告说,在健康肺和癌性肺中,应变和僵硬度的变化都随着经肺压力的增加而增加。我们的新方法可以定量评估疾病引起的肺泡硬度变化,并对机械传导产生影响。
    Lung diseases such as cancer substantially alter the mechanical properties of the organ with direct impact on the development, progression, diagnosis, and treatment response of diseases. Despite significant interest in the lung\'s material properties, measuring the stiffness of intact lungs at sub-alveolar resolution has not been possible. Recently, we developed the crystal ribcage to image functioning lungs at optical resolution while controlling physiological parameters such as air pressure. Here, we introduce a data-driven, multiscale network model that takes images of the lung at different distending pressures, acquired via the crystal ribcage, and produces corresponding absolute stiffness maps. Following validation, we report absolute stiffness maps of the functioning lung at microscale resolution in health and disease. For representative images of a healthy lung and a lung with primary cancer, we find that while the lung exhibits significant stiffness heterogeneity at the microscale, primary tumors introduce even greater heterogeneity into the lung\'s microenvironment. Additionally, we observe that while the healthy alveoli exhibit strain-stiffening of ∼1.75 times, the tumor\'s stiffness increases by a factor of six across the range of measured transpulmonary pressures. While the tumor stiffness is 1.4 times the lung stiffness at a transpulmonary pressure of three cmH2O, the tumor\'s mean stiffness is nearly five times greater than that of the surrounding tissue at a transpulmonary pressure of 18 cmH2O. Finally, we report that the variance in both strain and stiffness increases with transpulmonary pressure in both the healthy and cancerous lungs. Our new method allows quantitative assessment of disease-induced stiffness changes in the alveoli with implications for mechanotransduction.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    这项研究调查了量子力学(QM)和多尺度计算方法在理解涉及甲基碘与NH2OH和NH2O-的SN2反应的反应机理和动力学中的应用,以及8-(乙烯氧基)十二-9-烯酸的克莱森重排。我们的目的是评估这些方法在预测这些有机反应的实验结果方面的准确性和有效性。我们通过使用仅QM计算以及QM和分子力学(MM)方法的几种混合方法来实现这一目标,即QM/MM,QM1/QM2和QM1/QM2/MM方法。对于SN2反应,我们的结果证明了在计算中明确包括溶剂效应以准确再现过渡态几何形状和能量学的重要性。多尺度方法,特别是QM/MM和QM1/QM2,在预测活化能方面显示出有希望的性能。此外,我们观察到MM活性区的大小显着影响计算的活化能的准确性,强调在多尺度计算的设置过程中需要仔细考虑。在克莱森重新安排的情况下,仅QM和多尺度方法都成功地再现了所提出的反应机理。然而,使用连续溶剂化模型计算的活化自由能,基于仅QM结构的单点计算,没有考虑到溶剂的影响。另一方面,多尺度方法更准确地捕获溶剂对活化自由能的影响,通过系统的误差校正,提高了结果的准确性。此外,我们介绍了一个Python代码,用于使用ORCA设置多尺度计算,它可在GitHub上获得,网址为https://github.com/iranimehdi/pdbtoORCA。
    This study investigates the application of quantum mechanical (QM) and multiscale computational methods in understanding the reaction mechanisms and kinetics of SN2 reactions involving methyl iodide with NH2OH and NH2O-, as well as the Claisen rearrangement of 8-(vinyloxy)dec-9-enoate. Our aim is to evaluate the accuracy and effectiveness of these methods in predicting experimental outcomes for these organic reactions. We achieve this by employing QM-only calculations and several hybrids of QM and molecular mechanics (MM) methods, namely QM/MM, QM1/QM2, and QM1/QM2/MM methodologies. For the SN2 reactions, our results demonstrate the importance of explicitly including solvent effects in the calculations to accurately reproduce the transition state geometry and energetics. The multiscale methods, particularly QM/MM and QM1/QM2, show promising performance in predicting activation energies. Moreover, we observe that the size of the MM active region significantly affects the accuracy of calculated activation energies, highlighting the need for careful consideration during the setup of multiscale calculations. In the case of the Claisen rearrangement, both QM-only and multiscale methods successfully reproduce the proposed reaction mechanism. However, the activation free energies calculated using a continuum solvation model, based on single-point calculations of QM-only structures, fail to account for solvent effects. On the other hand, multiscale methods more accurately capture the impact of solvents on activation free energies, with systematic error correction enhancing the accuracy of the results. Furthermore, we introduce a Python code for setting up multiscale calculations with ORCA, which is available on GitHub at https://github.com/iranimehdi/pdbtoORCA .
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • DOI:
    文章类型: Journal Article
    多尺度模型为研究复杂过程提供了独特的工具,这些过程研究跨空间和时间在不同尺度上发生的事件。在生物系统的背景下,这样的模型可以模拟发生在细胞内水平的机制,如信号,在细胞外水平,细胞与其他细胞交流和协调。他们旨在了解在复杂疾病中观察到的遗传或环境放松管制的影响,描述病理组织和免疫系统之间的相互作用,并提出恢复患病表型的策略。这些多尺度模型的构建仍然是一项非常复杂的任务,包括要考虑的组件的选择,要模拟的过程的细节水平,或参数对数据的拟合。另一个困难是用C++或Python等语言编程这些模型所需的专业知识。这可能会阻碍非专家的参与。通过结构化的描述形式简化这个过程-加上图形界面-对于使建模更容易被更广泛的科学界访问至关重要。以及简化高级用户的流程。本文介绍了三个依赖于PhysiBoSS框架的多尺度模型示例,PhysiCell的附加组件,其中包括作为基于代理的方法的连续时间布尔模型的细胞内描述。本文演示了如何轻松构建此类模型,依靠PhysiCell工作室,PhysiCell图形用户界面。分步教程作为补充材料提供,所有模型都在以下位置提供:https://physiboss。github.io/tutorial/.
    Multiscale models provide a unique tool for studying complex processes that study events occurring at different scales across space and time. In the context of biological systems, such models can simulate mechanisms happening at the intracellular level such as signaling, and at the extracellular level where cells communicate and coordinate with other cells. They aim to understand the impact of genetic or environmental deregulation observed in complex diseases, describe the interplay between a pathological tissue and the immune system, and suggest strategies to revert the diseased phenotypes. The construction of these multiscale models remains a very complex task, including the choice of the components to consider, the level of details of the processes to simulate, or the fitting of the parameters to the data. One additional difficulty is the expert knowledge needed to program these models in languages such as C++ or Python, which may discourage the participation of non-experts. Simplifying this process through structured description formalisms - coupled with a graphical interface - is crucial in making modeling more accessible to the broader scientific community, as well as streamlining the process for advanced users. This article introduces three examples of multiscale models which rely on the framework PhysiBoSS, an add-on of PhysiCell that includes intracellular descriptions as continuous time Boolean models to the agent-based approach. The article demonstrates how to easily construct such models, relying on PhysiCell Studio, the PhysiCell Graphical User Interface. A step-by-step tutorial is provided as a Supplementary Material and all models are provided at: https://physiboss.github.io/tutorial/.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    大脑电路的生物详细模型是具有挑战性的建立和模拟由于大量的神经元,它们复杂的相互作用,和许多未知的生理参数。简化的数学模型更易于处理,但是当远离神经解剖学/生理学时,很难评估。我们提出了一个多尺度模型,粗粒度(CG),同时保留局部生物细节,在生物现实主义和可计算性之间提供了最好的平衡。本文提出了这样一个模型。一般来说,CG模型专注于神经元组之间的相互作用,这里称为“像素”,而不是单个细胞。在我们的案例中,动态在像素内和像素间尺度上交替更新,一个人通知另一个人,直到在两个尺度上都达到平衡。一个创新是我们如何利用潜在的生物学:利用大脑皮层局部解剖结构的相似性,我们将像素内动力学建模为由“外部”输入驱动的单个动力学系统。这些输入随像素外部的事件而变化,但它们的范围可以先验估计。与直接多尺度模拟相比,预先计算和制表所有潜在的局部响应显着加快了更新过程。我们使用灵长类视觉皮层模型来说明我们的方法。除了局部神经元到神经元的可变性(在任何CG近似中都必须丢失)之外,我们的模型以很小的计算成本再现了大规模网络模型的各种特征。这些包括神经元反应作为其取向选择性的结果,视觉神经元的主要功能。
    Biologically detailed models of brain circuitry are challenging to build and simulate due to the large number of neurons, their complex interactions, and the many unknown physiological parameters. Simplified mathematical models are more tractable, but harder to evaluate when too far removed from neuroanatomy/physiology. We propose that a multiscale model, coarse-grained (CG) while preserving local biological details, offers the best balance between biological realism and computability. This paper presents such a model. Generally, CG models focus on the interaction between groups of neurons-here termed \"pixels\"-rather than individual cells. In our case, dynamics are alternately updated at intra- and interpixel scales, with one informing the other, until convergence to equilibrium is achieved on both scales. An innovation is how we exploit the underlying biology: Taking advantage of the similarity in local anatomical structures across large regions of the cortex, we model intrapixel dynamics as a single dynamical system driven by \"external\" inputs. These inputs vary with events external to the pixel, but their ranges can be estimated a priori. Precomputing and tabulating all potential local responses speed up the updating procedure significantly compared to direct multiscale simulation. We illustrate our methodology using a model of the primate visual cortex. Except for local neuron-to-neuron variability (necessarily lost in any CG approximation) our model reproduces various features of large-scale network models at a tiny fraction of the computational cost. These include neuronal responses as a consequence of their orientation selectivity, a primary function of visual neurons.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号