Mitosis

有丝分裂
  • 文章类型: Journal Article
    有丝分裂的适当控制取决于泛素介导的正确有丝分裂调节剂在正确时间的降解。这通过由纺锤组装检查点(SAC)调节的后期促进复合物/环体(APC/C)泛素连接酶来实现。SAC阻止APC/C识别细胞周期蛋白B1,必要的后期和胞质分裂抑制剂,直到所有染色体都附着在纺锤体上。一旦染色体附着,细胞周期蛋白B1快速降解以实现染色体分离和胞质分裂。我们对SAC如何抑制APC/C有很好的理解,但是,一旦SAC关闭,APC/C如何识别CyclinB1的知识相对较少。这里,通过结合活细胞成像,体外重建生物化学,并通过低温电子显微镜进行结构分析,我们提供的证据表明,细胞周期蛋白B1在中期的快速识别需要APC/C的空间调节。利用荧光互相关光谱,我们发现细胞周期蛋白B1和APC/C主要在有丝分裂器相互作用。我们证明这是因为细胞周期蛋白B1和APC/C一样,与核小体结合,并鉴定N末端的“精氨酸锚”,以满足与核小体结合的需要和充分。使CyclinB1上的精氨酸锚突变可减少其与APC/C的相互作用并延迟其降解:具有突变体的细胞,非核小体结合细胞周期蛋白B1成为非整倍体,证明了我们发现的生理相关性。一起,我们的数据表明,有丝分裂染色体促进CyclinB1和APC/C之间的有效相互作用,以确保CyclinB1的及时降解和基因组稳定性。
    The proper control of mitosis depends on the ubiquitin-mediated degradation of the right mitotic regulator at the right time. This is effected by the Anaphase Promoting Complex/Cyclosome (APC/C) ubiquitin ligase that is regulated by the Spindle Assembly Checkpoint (SAC). The SAC prevents the APC/C from recognising Cyclin B1, the essential anaphase and cytokinesis inhibitor, until all chromosomes are attached to the spindle. Once chromosomes are attached, Cyclin B1 is rapidly degraded to enable chromosome segregation and cytokinesis. We have a good understanding of how the SAC inhibits the APC/C, but relatively little is known about how the APC/C recognises Cyclin B1 as soon as the SAC is turned off. Here, by combining live-cell imaging, in vitro reconstitution biochemistry, and structural analysis by cryo-electron microscopy, we provide evidence that the rapid recognition of Cyclin B1 in metaphase requires spatial regulation of the APC/C. Using fluorescence cross-correlation spectroscopy, we find that Cyclin B1 and the APC/C primarily interact at the mitotic apparatus. We show that this is because Cyclin B1, like the APC/C, binds to nucleosomes, and identify an \'arginine-anchor\' in the N-terminus as necessary and sufficient for binding to the nucleosome. Mutating the arginine anchor on Cyclin B1 reduces its interaction with the APC/C and delays its degradation: cells with the mutant, non-nucleosome-binding Cyclin B1 become aneuploid, demonstrating the physiological relevance of our findings. Together, our data demonstrate that mitotic chromosomes promote the efficient interaction between Cyclin B1 and the APC/C to ensure the timely degradation of Cyclin B1 and genomic stability.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    细胞分裂的准确性需要精确调节控制DNA/基因组复制的细胞机制,确保其在子细胞中的均匀分布。中心体周期的控制对于双极主轴的形成至关重要,确保基因组的无差错分离。细胞和中心体周期沿着类似的原理紧密同步地操作。两者都需要在每个细胞周期中重复一轮,两者都受关键蛋白激酶的活性控制。然而,我们对同步这两个周期的精确细胞机制和关键调节因子的理解仍然不明确。这里,我们提出了我们的假设,即有丝分裂激酶活性动态平衡的时空调节形成了一个控制细胞和中心体周期同步进程的分子时钟。
    The accuracy of cell division requires precise regulation of the cellular machinery governing DNA/genome duplication, ensuring its equal distribution among the daughter cells. The control of the centrosome cycle is crucial for the formation of a bipolar spindle, ensuring error-free segregation of the genome. The cell and centrosome cycles operate in close synchrony along similar principles. Both require a single duplication round in every cell cycle, and both are controlled by the activity of key protein kinases. Nevertheless, our comprehension of the precise cellular mechanisms and critical regulators synchronizing these two cycles remains poorly defined. Here, we present our hypothesis that the spatiotemporal regulation of a dynamic equilibrium of mitotic kinases activities forms a molecular clock that governs the synchronous progression of both the cell and the centrosome cycles.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    真核染色体分离需要动子,在染色体着丝粒上组装并介导附着到动态纺锤体微管的多兆道尔顿蛋白质机器。Kinetochores是由许多复合体建造的,重组子组件的结构研究也取得了进展。然而,关于原生动体体系结构的结构信息有限。为了解决这个问题,我们纯化了功能,来自嗜热酵母马氏克鲁维酵母的天然动体,并通过电子显微镜(EM)对其进行了检查,低温电子断层显像(cryo-ET),和原子力显微镜(AFM)。动静脉非常大,具有与现有模型一致的特征的柔性组件。我们通过可视化它们与微管的相互作用并定位微管粘合剂来分配动粒极性,Ndc80c.这项工作表明,孤立的动车组比基于重组子组件的已知结构所预期的动态和复杂,并为在结构水平上研究动车组的整体结构和功能奠定了基础。
    Eukaryotic chromosome segregation requires kinetochores, multi-megadalton protein machines that assemble on the centromeres of chromosomes and mediate attachments to dynamic spindle microtubules. Kinetochores are built from numerous complexes, and there has been progress in structural studies on recombinant subassemblies. However, there is limited structural information on native kinetochore architecture. To address this, we purified functional, native kinetochores from the thermophilic yeast Kluyveromyces marxianus and examined them by electron microscopy (EM), cryoelectron tomography (cryo-ET), and atomic force microscopy (AFM). The kinetochores are extremely large, flexible assemblies that exhibit features consistent with prior models. We assigned kinetochore polarity by visualizing their interactions with microtubules and locating the microtubule binder, Ndc80c. This work shows that isolated kinetochores are more dynamic and complex than what might be anticipated based on the known structures of recombinant subassemblies and provides the foundation to study the global architecture and functions of kinetochores at a structural level.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    环状的Cohesin复合体,由核心亚基Smc1,Smc3,Scc1和SA2(或其模拟SA1)组成,拓扑地捕获两个重复的姐妹DNA分子,以在S期建立姐妹染色单体内聚力。Cohesin释放因子Wapl如何结合Cohesin复合物仍然很难理解,从而诱导Cohesin从有丝分裂染色体上解离,以允许姐妹染色单体的适当解析和分离。这里,我们证明Wapl使用两个包含FGF基序和YNARHWN基序的结构模块,分别,在Scc1和SA2之间的广泛复合界面中同时结合不同的口袋。引人注目的是,只有当两个对接模块都变异时,Wapl完全失去了绑定Scc1-SA2接口和释放Cohesin的能力,导致有丝分裂中错误的染色体分离。令人惊讶的是,索罗林,它包含一个保守的FGF基序,在S期和G2期作为Wapl的主要拮抗剂,不绑定Scc1-SA2接口。此外,SGo1,在有丝分裂着丝粒上的主要保护者,只能与FGF基序竞争,而不能与Wapl的YNARHWN基序竞争结合Scc1-SA2接口。我们的数据揭示了Wapl结合Cohesin以确保精确染色体分离的分子机制。
    The ring-shaped Cohesin complex, consisting of core subunits Smc1, Smc3, Scc1, and SA2 (or its paralog SA1), topologically entraps two duplicated sister DNA molecules to establish sister chromatid cohesion in S-phase. It remains largely elusive how the Cohesin release factor Wapl binds the Cohesin complex, thereby inducing Cohesin disassociation from mitotic chromosomes to allow proper resolution and separation of sister chromatids. Here, we show that Wapl uses two structural modules containing the FGF motif and the YNARHWN motif, respectively, to simultaneously bind distinct pockets in the extensive composite interface between Scc1 and SA2. Strikingly, only when both docking modules are mutated, Wapl completely loses the ability to bind the Scc1-SA2 interface and release Cohesin, leading to erroneous chromosome segregation in mitosis. Surprisingly, Sororin, which contains a conserved FGF motif and functions as a master antagonist of Wapl in S-phase and G2-phase, does not bind the Scc1-SA2 interface. Moreover, Sgo1, the major protector of Cohesin at mitotic centromeres, can only compete with the FGF motif but not the YNARHWN motif of Wapl for binding Scc1-SA2 interface. Our data uncover the molecular mechanism by which Wapl binds Cohesin to ensure precise chromosome segregation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    有丝分裂表现出惊人的进化可塑性,分裂的真核细胞在有丝分裂纺锤体的组织和核膜破裂的程度上有所不同。一项新的研究表明,多核化的生活方式可能有利于封闭核分裂的演变。
    Mitosis exhibits astonishing evolutionary plasticity, with dividing eukaryotic cells differing in the organization of the mitotic spindle and the extent of nuclear envelope breakdown. A new study suggests that a multinucleated lifestyle may favor the evolution of closed nuclear division.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    早期胚胎的有丝分裂通常以快速的速度进行,但是这个速度是如何实现的还不清楚。这里,我们发现细胞周期蛋白B3是秀丽隐杆线虫胚胎中快速胚胎有丝分裂的主要驱动因素。细胞周期蛋白B1和B2支持缓慢的有丝分裂(NEBD至后期~600s),但是细胞周期蛋白B3的存在主要驱动了野生型中观察到的大约三倍更快的有丝分裂。在细胞周期蛋白B1和B2驱动的有丝分裂中,多个有丝分裂事件减慢,细胞周期蛋白B3相关的Cdk1H1激酶活性比细胞周期蛋白B1相关的Cdk1活性高25倍。将细胞周期蛋白B1添加到仅快速细胞周期蛋白B3的有丝分裂中,会在完成染色体排列和后期开始之间引入〜60s延迟;这种延迟,这对隔离保真度很重要,依赖于后期激活剂Cdc20的抑制性磷酸化。因此,细胞周期蛋白B3优势,与通过Cdc20磷酸化起作用的细胞周期蛋白B1依赖性延迟相结合,在秀丽隐杆线虫早期胚胎中设置快速的步伐并确保有丝分裂的保真度。
    Mitosis in early embryos often proceeds at a rapid pace, but how this pace is achieved is not understood. Here, we show that cyclin B3 is the dominant driver of rapid embryonic mitoses in the C. elegans embryo. Cyclins B1 and B2 support slow mitosis (NEBD to anaphase ∼600 s), but the presence of cyclin B3 dominantly drives the approximately threefold faster mitosis observed in wildtype. Multiple mitotic events are slowed down in cyclin B1 and B2-driven mitosis, and cyclin B3-associated Cdk1 H1 kinase activity is ∼25-fold more active than cyclin B1-associated Cdk1. Addition of cyclin B1 to fast cyclin B3-only mitosis introduces an ∼60-s delay between completion of chromosome alignment and anaphase onset; this delay, which is important for segregation fidelity, is dependent on inhibitory phosphorylation of the anaphase activator Cdc20. Thus, cyclin B3 dominance, coupled to a cyclin B1-dependent delay that acts via Cdc20 phosphorylation, sets the rapid pace and ensures mitotic fidelity in the early C. elegans embryo.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    由于有丝分裂重组引起的杂合性丧失(LOH)通常与各种癌症(例如视网膜母细胞瘤)的发展有关。LOH也是遗传多样性的重要来源,尤其是在减数分裂很少发生的生物中。Irc20是一种推定的解旋酶,E3泛素连接酶参与DNA双链断裂修复途径。我们分析了全基因组的LOH事件,总体染色体改变,11个酿酒酵母突变积累系中的小插入缺失和单核苷酸突变经历了50个有丝分裂瓶颈。irc20的LOH增强很小(1.6倍),但与野生型相比具有统计学意义。短(≤1kb)和长(>10kb)的LOH束在irc20Δ中显着增强。与野生型相比,irc20的间质和末端LOH事件也显着增强。与野生型相比,irc20的LOH事件更多的端粒近端和远离着丝粒。总体染色体变化,单核苷酸突变和in-dels在irc20和野生型之间具有可比性。减数分裂重组的基于基因座和全基因组分析表明,减数分裂交叉频率在irc20Δ中没有改变。这些结果表明Irc20主要调节有丝分裂重组,而不影响减数分裂交叉。我们的结果表明,IRC20基因对于调节LOH频率和分布很重要。
    Loss of Heterozygosity (LOH) due to mitotic recombination is frequently associated with the development of various cancers (e.g. retinoblastoma). LOH is also an important source of genetic diversity, especially in organisms where meiosis is infrequent. Irc20 is a putative helicase, and E3 ubiquitin ligase involved in DNA double-strand break repair pathway. We analyzed genome-wide LOH events, gross chromosomal changes, small insertion-deletions and single nucleotide mutations in eleven S. cerevisiae mutation accumulation lines of irc20∆, which underwent 50 mitotic bottlenecks. LOH enhancement in irc20∆ was small (1.6 fold), but statistically significant as compared to the wild type. Short (≤ 1 kb) and long (> 10 kb) LOH tracts were significantly enhanced in irc20∆. Both interstitial and terminal LOH events were also significantly enhanced in irc20∆ compared to the wild type. LOH events in irc20∆ were more telomere proximal and away from centromeres compared to the wild type. Gross chromosomal changes, single nucleotide mutations and in-dels were comparable between irc20∆ and wild type. Locus based and genome-wide analysis of meiotic recombination showed that meiotic crossover frequencies are not altered in irc20∆. These results suggest Irc20 primarily regulates mitotic recombination and does not affect meiotic crossovers. Our results suggest that the IRC20 gene is important for regulating LOH frequency and distribution.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    在细胞分裂过程中,有丝分裂纺锤体在细胞中动态移动,以定位染色体并确定两个子细胞的最终空间位置。这些运动归因于皮质力发生器的作用,该发生器拉动星体微管以定位主轴,以及这些相同的微管对细胞皮质和质膜的推动作用。先前已经对对抗微管定心力的皮层力发生器的附着和分离进行了建模(Grill等人。在PhysRevLett94:108104,2005)中,通过随机模拟和平均场Fokker-Planck方程(描述力发生器的随机运动)来预测主轴杆在一个空间维度上的振荡。使用系统的渐近方法,我们将Fokker-Planck系统简化为一组常微分方程(ODE),与Grill等人提出的一套方案一致。,这可以为Fokker-Planck系统呈现振荡的条件提供准确的预测。在小恢复力的限制下,我们得出了主轴极振荡幅度的代数预测,并证明了非线性振荡的弛豫结构。我们还展示了在平均场Fokker-Planck系统预测稳定性的条件下,在随机模拟中如何出现噪声引起的振荡,但是可以通过ODE模型直接估算周期,并通过包含随机结合动力学的相关随机微分方程估算振幅。
    During cell division, the mitotic spindle moves dynamically through the cell to position the chromosomes and determine the ultimate spatial position of the two daughter cells. These movements have been attributed to the action of cortical force generators which pull on the astral microtubules to position the spindle, as well as pushing events by these same microtubules against the cell cortex and plasma membrane. Attachment and detachment of cortical force generators working antagonistically against centring forces of microtubules have been modelled previously (Grill et al. in Phys Rev Lett 94:108104, 2005) via stochastic simulations and mean-field Fokker-Planck equations (describing random motion of force generators) to predict oscillations of a spindle pole in one spatial dimension. Using systematic asymptotic methods, we reduce the Fokker-Planck system to a set of ordinary differential equations (ODEs), consistent with a set proposed by Grill et al., which can provide accurate predictions of the conditions for the Fokker-Planck system to exhibit oscillations. In the limit of small restoring forces, we derive an algebraic prediction of the amplitude of spindle-pole oscillations and demonstrate the relaxation structure of nonlinear oscillations. We also show how noise-induced oscillations can arise in stochastic simulations for conditions in which the mean-field Fokker-Planck system predicts stability, but for which the period can be estimated directly by the ODE model and the amplitude by a related stochastic differential equation that incorporates random binding kinetics.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    纺锤体组装检查点(SAC)通过阻止从中期到后期的进展,直到所有染色体都正确地连接到有丝分裂纺锤体上,从而在时间上调节有丝分裂。中心体细化有丝分裂纺锤体在纺锤体两极的空间组织。然而,中心体丢失导致延长有丝分裂,表明中心体也告知哺乳动物细胞有丝分裂的时间组织。这里,我们发现染色体细胞的有丝分裂延迟是由SAC以MPS1依赖的方式强制执行的,并且SAC依赖性有丝分裂延迟是在核体细胞中发生双极细胞分裂所必需的。虽然染色体细胞变成多倍体,多倍体不足以导致依赖SAC介导的延迟以完成细胞分裂。相反,缺乏MPS1活性的分裂失败是由于在染色体纺锤体变为双极之前发生有丝分裂退出。此外,防止中心体分离足以使细胞分裂依赖于SAC依赖性有丝分裂延迟。因此,中心体及其在有丝分裂早期对两个纺锤体极点的定义提供了“及时的二性”,可以在没有SAC依赖性有丝分裂延迟的情况下进行细胞分裂。
    The spindle assembly checkpoint (SAC) temporally regulates mitosis by preventing progression from metaphase to anaphase until all chromosomes are correctly attached to the mitotic spindle. Centrosomes refine the spatial organization of the mitotic spindle at the spindle poles. However, centrosome loss leads to elongated mitosis, suggesting that centrosomes also inform the temporal organization of mitosis in mammalian cells. Here, we find that the mitotic delay in acentrosomal cells is enforced by the SAC in a MPS1-dependent manner, and that a SAC-dependent mitotic delay is required for bipolar cell division to occur in acentrosomal cells. Although acentrosomal cells become polyploid, polyploidy is not sufficient to cause dependency on a SAC-mediated delay to complete cell division. Rather, the division failure in absence of MPS1 activity results from mitotic exit occurring before acentrosomal spindles can become bipolar. Furthermore, prevention of centrosome separation suffices to make cell division reliant on a SAC-dependent mitotic delay. Thus, centrosomes and their definition of two spindle poles early in mitosis provide a \'timely two-ness\' that allows cell division to occur in absence of a SAC-dependent mitotic delay.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    温度可以影响细胞必需的每个反应。对于无法调节自身温度的生物体,适应不可预测的波动和可变时间尺度的温度是一个重大挑战。地球上温度变化的幅度和频率都在增加,提出了生物圈将如何回应的问题。为了研究适应温度的机制,我们收集了来自不同气候的真菌Ashbyagossypii的野生分离株,只有4600个基因的紧凑基因组。我们发现了核分裂周期和极化形态发生的控制,这两个真菌生长的关键过程,对温度敏感,在分离株之间变化。表型与称为Whi3的RNA结合蛋白的富含谷氨酰胺的区域(QRR)IDR内的天然变化序列相关。该蛋白质通过其形成生物分子缩合物的能力来调节核分裂和极化生长。在细胞和无细胞重建试验中,我们发现温度调节Whi3基冷凝物的性质。在分离株之间交换Whi3序列足以挽救对温度敏感的表型,特别是,QRR内的七肽重复序列赋予温度敏感行为。一起,这些数据表明,在特定温度范围内,IDR大小和组成的序列变化可促进细胞对生长的适应.这些数据证明了IDR作为快速适应环境波动的调谐旋钮的功能。
    Temperature can impact every reaction essential to a cell. For organisms that cannot regulate their own temperature, adapting to temperatures that fluctuate unpredictably and on variable timescales is a major challenge. Extremes in the magnitude and frequency of temperature changes are increasing across the planet, raising questions as to how the biosphere will respond. To examine mechanisms of adaptation to temperature, we collected wild isolates from different climates of the fungus Ashbya gossypii, which has a compact genome of only ∼4,600 genes. We found control of the nuclear division cycle and polarized morphogenesis, both critical processes for fungal growth, were temperature sensitive and varied among the isolates. The phenotypes were associated with naturally varying sequences within the glutamine-rich region (QRR) IDR of an RNA-binding protein called Whi3. This protein regulates both nuclear division and polarized growth via its ability to form biomolecular condensates. In cells and in cell-free reconstitution assays, we found that temperature tunes the properties of Whi3-based condensates. Exchanging Whi3 sequences between isolates was sufficient to rescue temperature-sensitive phenotypes, and specifically, a heptad repeat sequence within the QRR confers temperature-sensitive behavior. Together, these data demonstrate that sequence variation in the size and composition of an IDR can promote cell adaptation to growth at specific temperature ranges. These data demonstrate the power of IDRs as tuning knobs for rapid adaptation to environmental fluctuations.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号