Microbial cell factory

微生物细胞工厂
  • 文章类型: Journal Article
    芳香族氨基酸(AAA)及其衍生化合物具有巨大的商业价值,在食品中有着广泛的应用,化学和制药领域。AAA及其衍生化合物的微生物生产因其环境友好性和可持续性而具有广阔的前景。然而,低产量和生产效率仍然是实现工业生产的主要挑战。随着合成生物学的发展,AAA和衍生化合物的微生物生产得到了显著促进。在这次审查中,对当前进展的全面概述,提供了AAA和衍生化合物生物合成的挑战和相应的解决方案。AAA和衍生化合物生物合成中合成生物学技术的最前沿发展,包括基于CRISPR的系统,基因编码的生物传感器和合成遗传电路,被突出显示。最后,讨论了有利于AAA和衍生化合物生物合成的现代策略的未来前景。本综述为利用合成生物学技术构建芳香化合物微生物细胞工厂提供指导。
    Aromatic amino acids (AAA) and derived compounds have enormous commercial value with extensive applications in the food, chemical and pharmaceutical fields. Microbial production of AAA and derived compounds is a promising prospect for its environmental friendliness and sustainability. However, low yield and production efficiency remain major challenges for realizing industrial production. With the advancement of synthetic biology, microbial production of AAA and derived compounds has been significantly facilitated. In this review, a comprehensive overview on the current progresses, challenges and corresponding solutions for AAA and derived compounds biosynthesis is provided. The most cutting-edge developments of synthetic biology technology in AAA and derived compounds biosynthesis, including CRISPR-based system, genetically encoded biosensors and synthetic genetic circuits, were highlighted. Finally, future prospects of modern strategies conducive to the biosynthesis of AAA and derived compounds are discussed. This review offers guidance on constructing microbial cell factory for aromatic compound using synthetic biology technology.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    白藜芦醇,苯丙素类化合物,表现出不同的药理特性,使其成为健康和疾病管理的宝贵候选人。然而,对白藜芦醇的需求超过了植物提取方法的能力,需要替代生产战略。与基于植物的方法相比,微生物合成具有若干优势,并提出了有希望的替代方案。Yarrowialipolytica由于其安全的性质而在微生物宿主中脱颖而出,丰富的乙酰辅酶A和丙二酰辅酶A可用性,和强大的磷酸戊糖途径。本研究旨在设计Y.Lipolytica用于白藜芦醇生产。白藜芦醇生物合成途径被整合到Y中。通过添加编码来自谷红酵母的酪氨酸氨裂解酶的基因,来自烟草的4-香豆酸CoA连接酶,和葡萄的二苯乙烯合成酶。这导致产生14.3mg/L白藜芦醇。引入内源性和外源性丙二酰辅酶A生物合成模块的组合以增强丙二酰辅酶A的可用性。这包括编码来自拟南芥的乙酰辅酶A羧化酶2的基因,丙二酰辅酶A合成酶,和一种来自重氮根瘤菌的丙二酸转运蛋白。这些策略将白藜芦醇的产量增加到51.8mg/L。发酵条件的进一步优化和利用蔗糖作为YP培养基中的有效碳源,使白藜芦醇在烧瓶发酵中的浓度提高到141mg/L。通过结合这些策略,我们在受控补料分批生物反应器中实现了400mg/L白藜芦醇的滴度。这些发现证明了Y.lipolytica作为从头生产白藜芦醇的平台的功效,并强调了代谢工程的重要性。提高丙二酰辅酶A的可用性,和培养基优化以提高白藜芦醇的产量。
    Resveratrol, a phenylpropanoid compound, exhibits diverse pharmacological properties, making it a valuable candidate for health and disease management. However, the demand for resveratrol exceeds the capacity of plant extraction methods, necessitating alternative production strategies. Microbial synthesis offers several advantages over plant-based approaches and presents a promising alternative. Yarrowia lipolytica stands out among microbial hosts due to its safe nature, abundant acetyl-CoA and malonyl-CoA availability, and robust pentose phosphate pathway. This study aimed to engineer Y. lipolytica for resveratrol production. The resveratrol biosynthetic pathway was integrated into Y. lipolytica by adding genes encoding tyrosine ammonia lyase from Rhodotorula glutinis, 4-coumarate CoA ligase from Nicotiana tabacum, and stilbene synthase from Vitis vinifera. This resulted in the production of 14.3 mg/L resveratrol. A combination of endogenous and exogenous malonyl-CoA biosynthetic modules was introduced to enhance malonyl-CoA availability. This included genes encoding acetyl-CoA carboxylase 2 from Arabidopsis thaliana, malonyl-CoA synthase, and a malonate transporter protein from Bradyrhizobium diazoefficiens. These strategies increased resveratrol production to 51.8 mg/L. The further optimization of fermentation conditions and the utilization of sucrose as an effective carbon source in YP media enhanced the resveratrol concentration to 141 mg/L in flask fermentation. By combining these strategies, we achieved a titer of 400 mg/L resveratrol in a controlled fed-batch bioreactor. These findings demonstrate the efficacy of Y. lipolytica as a platform for the de novo production of resveratrol and highlight the importance of metabolic engineering, enhancing malonyl-CoA availability, and media optimization for improved resveratrol production.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    背景:白屈菜红碱是一种重要的生物碱,用于农业和医药。然而,它的结构复杂性和自然界中的低丰度阻碍了大量化学合成或从植物中提取。这里,我们使用遗传重编程重建并优化了酿酒酵母中白屈菜红碱的完整生物合成途径。
    结果:能够生产白屈菜红碱的第一代菌株Z4是通过七种植物来源的酶的异源表达获得的(McoBBE,TfSMT,AmTDC,EcTNMT,PSMSH,EcP6H,和PsCPR)在酿酒酵母W303-1A中的表达。当将该菌株在补充了100µM(S)-鱼网碱的合成完全(SC)培养基中培养10天时,它产生高达0.34µg/L白屈菜红碱。此外,通过整合多拷贝限速基因(TfSMT,AmTDC,EcTNMT,PSMSH,EcP6H,PsCPR,INO2和AtATR1),剪裁血红素和NADPH工程,并通过异源表达MtABCG10来促进产品运输,以增强白屈菜红碱生物合成的代谢通量,导致白屈菜红碱产量增加近900倍。结合栽培过程,白屈菜红碱在0.5L生物反应器中以每升12.61mg的滴度获得,比第一代重组菌株高37,000倍以上。
    结论:这是在酵母细胞工厂中产生白屈菜红碱的植物来源途径的第一个异源重建。应用组合工程策略已显着提高了酵母中白屈菜红碱的产量,并且是使用微生物细胞工厂合成功能产物的有希望的方法。这一成就强调了代谢工程和合成生物学在彻底改变天然产物生物合成方面的潜力。
    BACKGROUND: Chelerythrine is an important alkaloid used in agriculture and medicine. However, its structural complexity and low abundance in nature hampers either bulk chemical synthesis or extraction from plants. Here, we reconstructed and optimized the complete biosynthesis pathway for chelerythrine from (S)-reticuline in Saccharomyces cerevisiae using genetic reprogramming.
    RESULTS: The first-generation strain Z4 capable of producing chelerythrine was obtained via heterologous expression of seven plant-derived enzymes (McoBBE, TfSMT, AmTDC, EcTNMT, PsMSH, EcP6H, and PsCPR) in S. cerevisiae W303-1 A. When this strain was cultured in the synthetic complete (SC) medium supplemented with 100 µM of (S)-reticuline for 10 days, it produced up to 0.34 µg/L chelerythrine. Furthermore, efficient metabolic engineering was performed by integrating multiple-copy rate-limiting genes (TfSMT, AmTDC, EcTNMT, PsMSH, EcP6H, PsCPR, INO2, and AtATR1), tailoring the heme and NADPH engineering, and engineering product trafficking by heterologous expression of MtABCG10 to enhance the metabolic flux of chelerythrine biosynthesis, leading to a nearly 900-fold increase in chelerythrine production. Combined with the cultivation process, chelerythrine was obtained at a titer of 12.61 mg per liter in a 0.5 L bioreactor, which is over 37,000-fold higher than that of the first-generation recombinant strain.
    CONCLUSIONS: This is the first heterologous reconstruction of the plant-derived pathway to produce chelerythrine in a yeast cell factory. Applying a combinatorial engineering strategy has significantly improved the chelerythrine yield in yeast and is a promising approach for synthesizing functional products using a microbial cell factory. This achievement underscores the potential of metabolic engineering and synthetic biology in revolutionizing natural product biosynthesis.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    香兰素是世界上应用最广泛的调味剂之一,具有很高的应用价值。然而,香兰素生物合成的产量仍然有限,由于底物吸收效率低,以及香兰素对细胞生长的抑制作用。这里,我们通过在生产香兰素的工程大肠杆菌VA菌株中过表达编码候选转运蛋白的基因,筛选了高效阿魏酸进口蛋白TodX和香兰素出口商PP_0178和PP_0179,并通过共表达TodX和PP_0178/PP_0179进一步构建了自动调节双向运输系统。香兰素自诱导型启动子ADH7。与VA菌株相比,菌株VA-TodX-PP_0179可以有效地将阿魏酸穿过细胞膜并将其转化为香草醛,显著提高了底物利用率(14.86%)和香草醛效价(51.07%)。这项研究表明,自动调节双向运输系统显着提高底物吸收效率,同时减轻香草醛毒性问题,为香草醛生物合成提供了一条有前途的可行路线。
    Vanillin is one of the world\'s most extensively used flavoring agents with high application value. However, the yield of vanillin biosynthesis remains limited due to the low efficiency of substrate uptake and the inhibitory effect on cell growth caused by vanillin. Here, we screened high-efficiency ferulic acid importer TodX and vanillin exporters PP_0178 and PP_0179 by overexpressing genes encoding candidate transporters in a vanillin-producing engineered Escherichia coli strain VA and further constructed an autoregulatory bidirectional transport system by coexpressing TodX and PP_0178/PP_0179 with a vanillin self-inducible promoter ADH7. Compared with strain VA, strain VA-TodX-PP_0179 can efficiently transport ferulic acid across the cell membrane and convert it to vanillin, which significantly increases the substrate utilization rate efficiency (14.86%) and vanillin titer (51.07%). This study demonstrated that the autoregulatory bidirectional transport system significantly enhances the substrate uptake efficiency while alleviating the vanillin toxicity issue, providing a promising viable route for vanillin biosynthesis.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    麦角硫因(EGT)是一种天然存在的组氨酸衍生物,在医学上具有多种应用,化妆品,和食品工业。然而,由于生物合成途径有限,其可持续的生物合成面临障碍,前体的复杂代谢网络,和发酵相关的高成本。在这里,首先通过从大肠杆菌中的海洋甲基杆菌中重建一种新型的EGT生物合成途径,并通过质粒拷贝数对其进行优化,来解决这些限制。随后,前体氨基酸的供应是通过工程全球监管机构促进的,招募抗反馈抑制的突变体,阻碍竞争途径。这些代谢修饰导致EGT产生的显著改善。从35增加到130毫克/升,显着增长271.4%。此外,用玉米浆代替酵母提取物开发了一种经济的培养基,玉米湿磨的副产品。最后,通过在10L生物反应器中利用补料分批发酵,EGT的产量达到595mg/L,生产率为8.2mg/L/h。这项研究为探索和调节从头生物合成途径铺平了道路,以实现高效,低成本的EGT发酵生产。
    Ergothioneine (EGT) is a naturally occurring derivative of histidine with diverse applications in the medicine, cosmetic, and food industries. Nevertheless, its sustainable biosynthesis faces hurdles due to the limited biosynthetic pathways, complex metabolic network of precursors, and high cost associated with fermentation. Herein, efforts were made to address these limitations first by reconstructing a novel EGT biosynthetic pathway from Methylobacterium aquaticum in Escherichia coli and optimizing it through plasmid copy number. Subsequently, the supply of precursor amino acids was promoted by engineering the global regulator, recruiting mutant resistant to feedback inhibition, and blocking competitive pathways. These metabolic modifications resulted in a significant improvement in EGT production, increasing from 35 to 130 mg/L, representing a remarkable increase of 271.4%. Furthermore, an economical medium was developed by replacing yeast extract with corn steep liquor, a byproduct of wet milling of corn. Finally, the production of EGT reached 595 mg/L with a productivity of 8.2 mg/L/h by exploiting fed-batch fermentation in a 10 L bioreactor. This study paves the way for exploring and modulating a de novo biosynthetic pathway for efficient and low-cost fermentative production of EGT.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    高能量密度液体燃料(HED燃料)对于体积有限的航空航天飞行器至关重要,可以用作常规燃料的高能添加剂。萜烯衍生的HED生物燃料是绿色燃料合成的重要研究领域。从天然植物中直接提取萜烯对环境不利且昂贵。在微生物中设计有效的合成途径以实现高产率的萜烯显示出应用萜烯衍生燃料的巨大潜力。本文综述了萜烯衍生HED燃料的研究进展,调查萜烯燃料的性质和生物合成的现状。此外,我们系统地总结了生物合成萜烯的工程策略,包括采矿和工程萜烯合酶,优化代谢途径和细胞水平优化,如亚细胞定位萜烯合成和适应性进化。本文将有助于深入了解更好地开发萜烯衍生的HED燃料。
    High-energy-density liquid fuels (HED fuels) are essential for volume-limited aerospace vehicles and could serve as energetic additives for conventional fuels. Terpene-derived HED biofuel is an important research field for green fuel synthesis. The direct extraction of terpenes from natural plants is environmentally unfriendly and costly. Designing efficient synthetic pathways in microorganisms to achieve high yields of terpenes shows great potential for the application of terpene-derived fuels. This review provides an overview of the current research progress of terpene-derived HED fuels, surveying terpene fuel properties and the current status of biosynthesis. Additionally, we systematically summarize the engineering strategies for biosynthesizing terpenes, including mining and engineering terpene synthases, optimizing metabolic pathways and cell-level optimization, such as the subcellular localization of terpene synthesis and adaptive evolution. This article will be helpful in providing insight into better developing terpene-derived HED fuels.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    合成细胞工厂在经济高效生产生物燃料方面提供了巨大的优势,化学品,和药物化合物。然而,创建一个高性能的合成细胞工厂,细胞材料和能量通量的精确调节是必不可少的。在这种情况下,蛋白质成分包括酶,基于转录因子的生物传感器和转运蛋白起着关键作用。蛋白质工程是一种通过天然修饰靶序列来产生具有所需特性和功能的新型蛋白质变体的技术。这篇综述的重点是总结蛋白质工程在优化合成细胞工厂各个方面的最新进展,包括:增强酶活性以消除生产瓶颈,改变酶选择性以引导代谢途径流向所需产物,修改酶滥交以探索创新路线,提高运输效率。此外,利用蛋白质工程来修饰基于蛋白质的生物传感器加速进化过程并优化代谢途径的调节。还讨论了该技术的剩余挑战和未来机遇。
    Synthetic cell factory offers substantial advantages in economically efficient production of biofuels, chemicals, and pharmaceutical compounds. However, to create a high-performance synthetic cell factory, precise regulation of cellular material and energy flux is essential. In this context, protein components including enzymes, transcription factor-based biosensors and transporters play pivotal roles. Protein engineering aims to create novel protein variants with desired properties by modifying or designing protein sequences. This review focuses on summarizing the latest advancements of protein engineering in optimizing various aspects of synthetic cell factory, including: enhancing enzyme activity to eliminate production bottlenecks, altering enzyme selectivity to steer metabolic pathways towards desired products, modifying enzyme promiscuity to explore innovative routes, and improving the efficiency of transporters. Furthermore, the utilization of protein engineering to modify protein-based biosensors accelerates evolutionary process and optimizes the regulation of metabolic pathways. The remaining challenges and future opportunities in this field are also discussed.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    微生物细胞工厂,以其经济和环境效益而闻名,已成为学术和工业领域的主要趋势,特别是在天然化合物的发酵中。其中,植物衍生的萜烯是一类重要的生物活性天然产物。这种萜烯的大规模生产,例如青蒿素酸-青蒿素的关键前体-现在通过微生物细胞工厂是可行的。在萜烯的发酵中,两相发酵技术因其独特的优势得到了广泛的应用。它有利于产品的原位提取或吸附,有效减轻产品积累对微生物细胞的有害影响,从而显着提高了植物衍生萜烯的微生物生产效率。本文综述了两相发酵系统应用的最新进展,专注于植物源萜烯的微生物发酵。它还讨论了影响微生物生物合成萜烯的机制。此外,我们介绍了一些新的两阶段发酵技术,目前尚未在萜烯发酵中探索,旨在为两相发酵技术的未来应用提供更多的思考和探索。最后,我们讨论了两相发酵系统在工业应用中的几个挑战,特别是在下游加工。
    Microbial cell factories, renowned for their economic and environmental benefits, have emerged as a key trend in academic and industrial areas, particularly in the fermentation of natural compounds. Among these, plant-derived terpenes stand out as a significant class of bioactive natural products. The large-scale production of such terpenes, exemplified by artemisinic acid-a crucial precursor to artemisinin-is now feasible through microbial cell factories. In the fermentation of terpenes, two-phase fermentation technology has been widely applied due to its unique advantages. It facilitates in situ product extraction or adsorption, effectively mitigating the detrimental impact of product accumulation on microbial cells, thereby significantly bolstering the efficiency of microbial production of plant-derived terpenes. This paper reviews the latest developments in two-phase fermentation system applications, focusing on microbial fermentation of plant-derived terpenes. It also discusses the mechanisms influencing microbial biosynthesis of terpenes. Moreover, we introduce some new two-phase fermentation techniques, currently unexplored in terpene fermentation, with the aim of providing more thoughts and explorations on the future applications of two-phase fermentation technology. Lastly, we discuss several challenges in the industrial application of two-phase fermentation systems, especially in downstream processing.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    来自工程化细胞的产物分泌对于微生物细胞工厂可以是有利的。在核苷酸制造方面的广泛工作,最成功的微生物发酵工艺之一,使棒状杆菌能够通过随机诱变将核苷酸转运到细胞外;然而,潜在的机制尚未阐明,阻碍了其在运输工程中的应用。在这里,我们报道了来自C.stasis基因组的核苷酸输出主要促进子超家族(MFS)转运蛋白及其在G64残基的过度活跃突变。结构估计和分子动力学模拟表明,该转运蛋白的活性通过两种机制得到改善:(1)通过保守的“RxxQG”基序增强跨膜螺旋之间的相互作用以及底物结合;(2)捕获与底物相互作用的残基,以便更容易地从空腔中释放。我们的结果提供了有关MFS转运蛋白如何在底物结合时将其构象从内向状态改变为向外状态以促进外排的新见解,并且可以有助于开发合理的设计方法来改善微生物细胞工厂的外排。关键词:•评估了来自C.stasis基因组的MFS转运蛋白及其在残基G64处的突变•它通过增强跨膜螺旋相互作用和捕获的底物相互作用残基来增强转运蛋白活性•我们的结果有助于合理设计方法的开发以改善外排。
    Product secretion from an engineered cell can be advantageous for microbial cell factories. Extensive work on nucleotide manufacturing, one of the most successful microbial fermentation processes, has enabled Corynebacterium stationis to transport nucleotides outside the cell by random mutagenesis; however, the underlying mechanism has not been elucidated, hindering its applications in transporter engineering. Herein, we report the nucleotide-exporting major facilitator superfamily (MFS) transporter from the C. stationis genome and its hyperactive mutation at the G64 residue. Structural estimation and molecular dynamics simulations suggested that the activity of this transporter improved via two mechanisms: (1) enhancing interactions between transmembrane helices through the conserved \"RxxQG\" motif along with substrate binding and (2) trapping substrate-interacting residue for easier release from the cavity. Our results provide novel insights into how MFS transporters change their conformation from inward- to outward-facing states upon substrate binding to facilitate efflux and can contribute to the development of rational design approaches for efflux improvements in microbial cell factories. KEYPOINTS: • An MFS transporter from C. stationis genome and its mutation at residue G64 were assessed • It enhanced the transporter activity by strengthening transmembrane helix interactions and trapped substrate-interacting residues • Our results contribute to rational design approach development for efflux improvement.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    支链氨基酸(BCAAs),如L-缬氨酸,L-亮氨酸,L-异亮氨酸广泛用于食品和饲料中。为实现可持续发展目标,BCAAs的商业化生产已经完全被微生物发酵所取代。然而,由于其交错的代谢网络和细胞生长,通过微生物有效生产BCAA仍然是一个严峻的挑战。为了克服这些困难,系统代谢工程已成为生物合成BCAA的有效和可行的策略。本文首先综述了微生物合成BCAAs的研究进展和代表性的工程策略。第二,系统方法,如高通量筛选,适应性实验室进化,和组学分析,可用于在全细胞水平上分析BCAAs的合成,并进一步提高目标化学物质的滴度。最后,讨论了可能增加BCAAs微生物生产产量的新工具和工程策略和发展方向。
    Branched-chain amino acids (BCAAs) such as L-valine, L-leucine, and L-isoleucine are widely used in food and feed. To comply with sustainable development goals, commercial production of BCAAs has been completely replaced with microbial fermentation. However, the efficient production of BCAAs by microorganisms remains a serious challenge due to their staggered metabolic networks and cell growth. To overcome these difficulties, systemic metabolic engineering has emerged as an effective and feasible strategy for the biosynthesis of BCAA. This review firstly summarizes the research advances in the microbial synthesis of BCAAs and representative engineering strategies. Second, systematic methods, such as high-throughput screening, adaptive laboratory evolution, and omics analysis, can be used to analyses the synthesis of BCAAs at the whole-cell level and further improve the titer of target chemicals. Finally, new tools and engineering strategies that may increase the production output and development direction of the microbial production of BCAAs are discussed.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号