Magnaporthe

Magnaporthe
  • 文章类型: Journal Article
    植物免疫受体的生物工程已成为产生新的抗病性状的关键策略,以抵消植物病原体对全球粮食安全的不断扩大的威胁。然而,目前的方法受到植物病原体在田间的快速进化的限制,并且在部署时可能缺乏耐久性。这里,我们表明水稻的核苷酸结合,可以对富含亮氨酸的重复序列(NLR)免疫受体Pik-1进行工程改造,以响应来自多宿主原始真菌病原体稻瘟病菌的保守效应子家族。通过安装假定的宿主靶标,我们将PikNLR的效应子结合和响应谱从其同源稻瘟病效应子AVR-Pik转换为对哭泣loveggrass2(Pwl2)的宿主决定因子致病性,OsHIPP43代替天然整合的重金属相关域(生成Pikm-1OsHIPP43)。这种嵌合受体也对来自不同母细胞分离株的其他PWL等位基因有反应。Pwl2/OsHIPP43复合物的晶体结构显示出多面性,不容易被诱变破坏的强大界面,因此可以提供耐用的,在现场对携带PWL效应物的爆炸隔离物具有广泛的抵抗力。我们的发现强调了如何将病原体效应子的宿主靶标用于生物工程识别特异性,这些特异性与自然进化的抗病基因相比具有更强大的特性。
    Bioengineering of plant immune receptors has emerged as a key strategy for generating novel disease resistance traits to counteract the expanding threat of plant pathogens to global food security. However, current approaches are limited by rapid evolution of plant pathogens in the field and may lack durability when deployed. Here, we show that the rice nucleotide-binding, leucine-rich repeat (NLR) immune receptor Pik-1 can be engineered to respond to a conserved family of effectors from the multihost blast fungus pathogen Magnaporthe oryzae. We switched the effector binding and response profile of the Pik NLR from its cognate rice blast effector AVR-Pik to the host-determining factor pathogenicity toward weeping lovegrass 2 (Pwl2) by installing a putative host target, OsHIPP43, in place of the native integrated heavy metal-associated domain (generating Pikm-1OsHIPP43). This chimeric receptor also responded to other PWL alleles from diverse blast isolates. The crystal structure of the Pwl2/OsHIPP43 complex revealed a multifaceted, robust interface that cannot be easily disrupted by mutagenesis, and may therefore provide durable, broad resistance to blast isolates carrying PWL effectors in the field. Our findings highlight how the host targets of pathogen effectors can be used to bioengineer recognition specificities that have more robust properties compared to naturally evolved disease resistance genes.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    丝状植物病原体将效应蛋白递送到宿主细胞中以抑制宿主防御反应并操纵代谢过程以支持定植。了解这些效应物的进化和分子功能提供了有关发病机理的知识,并可以提出减少病原体造成的损害的新策略。然而,效应蛋白是高度可变的,共享弱序列相似性,尽管它们可以根据它们的结构进行分组,迄今为止,只有少数结构保守的效应子家族在功能上得到了表征.这里,我们证明,锌指折叠(ZiF)分泌的蛋白质在稻瘟病菌中形成了功能多样的效应子家族。该家族依赖于锌指基序的蛋白质稳定性,并且普遍存在于感染13种不同宿主物种的稻瘟病菌谱系中,形成不同的效应器部落。经典ZiF效应器的同系物,AVR-Pii,来自水稻的感染分离株存在于多个米曲霉谱系中。真菌的小麦感染菌株还具有AVR-Pii样等位基因,其结合宿主Exo70蛋白并激活免疫受体Pii。此外,ZiF部落的蛋白质可能会有所不同,表明功能多样化和复杂的效应子/宿主相互作用组。总之,我们发现了一个具有共同蛋白质折叠的新效应子家族,该家族在米曲霉谱系中具有功能多样性。这项工作扩大了我们对米曲霉效应子多样性的理解,植物致病的分子基础,并可能最终促进开发新的病原体抗性来源。
    Filamentous plant pathogens deliver effector proteins into host cells to suppress host defence responses and manipulate metabolic processes to support colonization. Understanding the evolution and molecular function of these effectors provides knowledge about pathogenesis and can suggest novel strategies to reduce damage caused by pathogens. However, effector proteins are highly variable, share weak sequence similarity and, although they can be grouped according to their structure, only a few structurally conserved effector families have been functionally characterized to date. Here, we demonstrate that Zinc-finger fold (ZiF) secreted proteins form a functionally diverse effector family in the blast fungus Magnaporthe oryzae. This family relies on the Zinc-finger motif for protein stability and is ubiquitously present in blast fungus lineages infecting 13 different host species, forming different effector tribes. Homologs of the canonical ZiF effector, AVR-Pii, from rice infecting isolates are present in multiple M. oryzae lineages. Wheat infecting strains of the fungus also possess an AVR-Pii like allele that binds host Exo70 proteins and activates the immune receptor Pii. Furthermore, ZiF tribes may vary in the proteins they bind to, indicating functional diversification and an intricate effector/host interactome. Altogether, we uncovered a new effector family with a common protein fold that has functionally diversified in lineages of M. oryzae. This work expands our understanding of the diversity of M. oryzae effectors, the molecular basis of plant pathogenesis and may ultimately facilitate the development of new sources for pathogen resistance.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    由真菌稻瘟病引起的稻瘟病是最具破坏性的水稻疾病之一。诸如Pi-ta或Pi-ta2的抗病基因在保护水稻生产免受稻瘟病中是关键的。已发表的工作报道Pi-ta编码核苷酸结合和富含亮氨酸的重复结构域蛋白(NLR),该蛋白通过直接结合识别真菌蛋白酶样效应子AVR-Pita。然而,这个模型受到了最近发现Pi-ta2抗性的挑战,这也依赖于AVR-Pita检测,由非常规抗性基因Ptr赋予,它编码具有细胞质Armadillo重复结构域的膜蛋白。这里,使用NLRPi-ta和PtrRNAi敲低和CRISPR/Cas9敲除突变水稻品系,我们发现AVR-Pita识别仅依赖于Ptr,而NLRPi-ta在其中没有作用,表明它不是Pi-ta抗性基因。Ptr的不同等位基因赋予不同的识别特异性。Ptr的A等位基因(PtrA)检测效应子的所有天然序列变体并赋予Pi-ta2抗性,而Ptr(PtrB)的B等位基因识别一组受限的AVR-Pita等位基因,因此,赋予Pi-ta抵抗。对AVR-Pita以及突变体和转基因菌株的天然多样性的分析确定了效应子序列中的一个特定多态性,该多态性控制了PtrB介导的抗性。一起来看,我们的工作确定,非常规水稻抗性蛋白Ptr以等位基因特异性方式检测到米曲霉效应子AVR-Pita,并且NLRPi-ta在Pi-ta抗性和AVR-Pita识别中没有功能。
    Blast disease caused by the fungus Magnaporthe oryzae is one of the most devastating rice diseases. Disease resistance genes such as Pi-ta or Pi-ta2 are critical in protecting rice production from blast. Published work reports that Pi-ta codes for a nucleotide-binding and leucine-rich repeat domain protein (NLR) that recognizes the fungal protease-like effector AVR-Pita by direct binding. However, this model was challenged by the recent discovery that Pi-ta2 resistance, which also relies on AVR-Pita detection, is conferred by the unconventional resistance gene Ptr, which codes for a membrane protein with a cytoplasmic armadillo repeat domain. Here, using NLR Pi-ta and Ptr RNAi knockdown and CRISPR/Cas9 knockout mutant rice lines, we found that AVR-Pita recognition relies solely on Ptr and that the NLR Pi-ta has no role in it, indicating that it is not the Pi-ta resistance gene. Different alleles of Ptr confer different recognition specificities. The A allele of Ptr (PtrA) detects all natural sequence variants of the effector and confers Pi-ta2 resistance, while the B allele of Ptr (PtrB) recognizes a restricted set of AVR-Pita alleles and, thereby, confers Pi-ta resistance. Analysis of the natural diversity in AVR-Pita and of mutant and transgenic strains identified one specific polymorphism in the effector sequence that controls escape from PtrB-mediated resistance. Taken together, our work establishes that the M. oryzae effector AVR-Pita is detected in an allele-specific manner by the unconventional rice resistance protein Ptr and that the NLR Pi-ta has no function in Pi-ta resistance and the recognition of AVR-Pita.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    一种新型负义单链RNA分枝杆菌病毒,指定为“稻瘟病菌霉菌病毒1”(MoMNV1),在稻瘟病菌稻瘟病菌分离株NJ39中鉴定。MoMNV1具有由10,515个核苷酸组成的单个基因组RNA片段,其中包含六个开放阅读框架。最大的开放阅读框包含5837个碱基并编码RNA复制酶。六个开放阅读框没有重叠,在基因组上呈线性排列,但是基因的间距很小,最大为315个碱基,最小为80个碱基。基因组比较和系统发育分析表明,MoMNV1是Mymonaviridae家族青霉菌属的新成员。
    A novel negative-sense single-stranded RNA mycovirus, designated as \"Magnaporthe oryzae mymonavirus 1\" (MoMNV1), was identified in the rice blast fungus Magnaporthe oryzae isolate NJ39. MoMNV1 has a single genomic RNA segment consisting of 10,515 nucleotides, which contains six open reading frames. The largest open reading frame contains 5837 bases and encodes an RNA replicase. The six open reading frames have no overlap and are arranged linearly on the genome, but the spacing of the genes is small, with a maximum of 315 bases and a minimum of 80 bases. Genome comparison and phylogenetic analysis indicated that MoMNV1 is a new member of the genus Penicillimonavirus of the family Mymonaviridae.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    水稻是世界上最重要的主食之一。然而,稻瘟病,由子囊菌引起的稻瘟病菌,严重影响水稻的产量和品质。钙调蛋白结合转录激活因子(CAMTA)在应对生物胁迫中起着至关重要的作用。在这项研究中,我们显示OsCAMTA3和CAMTA蛋白质样(OsCAMTAPL),缺少DNA结合域的OsCAMTA3同源物,在负向调节水稻抗病性方面起作用。OsCAMTA3与OsCAMTAPL相关。与野生型植物相比,oscamta3和oscamtapl突变体显示出增强的抗性,oscamta3/pl双突变体对米曲霉的抗性比oscamta3或oscamtapl更强。RNA-Seq分析显示,59个和73个基因,分别,在接种米曲霉之前和之后,在野生型植物和oscamta3中差异表达,包括OsALDH2B1,一种负调节植物免疫的乙醛脱氢酶。OsCAMTA3可以直接结合OsALDH2B1的启动子,OsALDH2B1在oscamta3、oscamtapl、和oscamta3/pl突变体。总之,OsCAMTA3与OsCAMTAPL联合,通过结合和激活水稻OsALDH2B1的表达来调节抗病性,揭示了水稻控制稻瘟病的策略,为抗性育种提供了重要的基因,对确保粮食安全具有一定的积极影响。
    Rice (Oryza sativa) is one of the most important staple foods worldwide. However, rice blast disease, caused by the ascomycete fungus Magnaporthe oryzae, seriously affects the yield and quality of rice. Calmodulin-binding transcriptional activators (CAMTAs) play vital roles in the response to biotic stresses. In this study, we showed that OsCAMTA3 and CAMTA PROTEIN LIKE (OsCAMTAPL), an OsCAMTA3 homolog that lacks the DNA-binding domain, functioned together in negatively regulating disease resistance in rice. OsCAMTA3 associated with OsCAMTAPL. The oscamta3 and oscamtapl mutants showed enhanced resistance compared to wild-type plants, and oscamta3/pl double mutants showed more robust resistance to M. oryzae than oscamta3 or oscamtapl. An RNA-Seq analysis revealed that 59 and 73 genes, respectively, were differentially expressed in wild-type plants and oscamta3 before and after inoculation with M. oryzae, including OsALDH2B1, an acetaldehyde dehydrogenase that negatively regulates plant immunity. OsCAMTA3 could directly bind to the promoter of OsALDH2B1, and OsALDH2B1 expression was decreased in oscamta3, oscamtapl, and oscamta3/pl mutants. In conclusion, OsCAMTA3 associates with OsCAMTAPL to regulate disease resistance by binding and activating the expression of OsALDH2B1 in rice, which reveals a strategy by which rice controls rice blast disease and provides important genes for resistance breeding holding a certain positive impact on ensuring food security.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    结论:这项研究是关于珍珠小米中NBLRR基因的全基因组鉴定和表征的第一份报告。我们已经证明了基因丢失和纯化选择在禾本科谱系中NBLRR和候选CaNBLRR基因对稻瘟病菌感染的抗性中的作用。植物已经进化出多种完整的机制来抵抗病原体的感染,其中植物免疫通过NBLRR(核苷酸结合位点,富含亮氨酸的重复)基因走在前列。珍珠小米的全基因组采矿(Cenchrusamericanus(L.)Morrone)揭示了146个CaNBLRR。NBLRR分支长度的变化显示了NBLRR响应于不断发展的病原体种族的动态性质。NBLRR的正交研究显示了多对一直系同源物的优势,表明珍珠谷子谱系中NBLRR的分歧主要是通过基因丢失事件,然后通过单拷贝复制获得基因。Further,纯化选择(Ka/Ks<1)促进了梨小米和禾本科其他成员谱系内NBLRR的扩展。存在顺式作用元素,viz.TCA元件,G-box,MYB,SARE,ABRE和用P环注释的保守基序,激酶2,RNBS-A,RNBS-D,GLPL,MHD,Rx-CC和LRR表明它们在抗病和应激调节中的推定作用。在珍珠小米品系中的qRT-PCR分析显示出对稻瘟病菌感染的相反反应,将CaNBLRRR20,CaNBLRR33,CaNBLRR46CaNBLRR51,CaNBLRR78和CaNBLRR146确定为推定的候选物。分子对接显示LRR结构域的三个和两个氨基酸残基参与形成氢键(组氨酸,精氨酸和苏氨酸)和盐桥(精氨酸和赖氨酸)与效应物。而CaNBLRR78和CaNBLRR20的14和20个氨基酸残基显示与效应子的11和9个氨基酸残基的疏水相互作用,Mg.00g064570。M01和Mg.00g006570。分别为m01。本研究全面概述了CaNBLRR,并通过了解宿主-病原体相互作用为其在珍珠小米抗性育种中的应用奠定了基础。
    CONCLUSIONS: The investigation is the first report on genome-wide identification and characterization of NBLRR genes in pearl millet. We have shown the role of gene loss and purifying selection in the divergence of NBLRRs in Poaceae lineage and candidate CaNBLRR genes for resistance to Magnaporthe grisea infection. Plants have evolved multiple integral mechanisms to counteract the pathogens\' infection, among which plant immunity through NBLRR (nucleotide-binding site, leucine-rich repeat) genes is at the forefront. The genome-wide mining in pearl millet (Cenchrus americanus (L.) Morrone) revealed 146 CaNBLRRs. The variation in the branch length of NBLRRs showed the dynamic nature of NBLRRs in response to evolving pathogen races. The orthology of NBLRRs showed a predominance of many-to-one orthologs, indicating the divergence of NBLRRs in the pearl millet lineage mainly through gene loss events followed by gene gain through single-copy duplications. Further, the purifying selection (Ka/Ks < 1) shaped the expansion of NBLRRs within the lineage of pear millet and other members of Poaceae. Presence of cis-acting elements, viz. TCA element, G-box, MYB, SARE, ABRE and conserved motifs annotated with P-loop, kinase 2, RNBS-A, RNBS-D, GLPL, MHD, Rx-CC and LRR suggests their putative role in disease resistance and stress regulation. The qRT-PCR analysis in pearl millet lines showing contrasting responses to Magnaporthe grisea infection identified CaNBLRR20, CaNBLRR33, CaNBLRR46 CaNBLRR51, CaNBLRR78 and CaNBLRR146 as putative candidates. Molecular docking showed the involvement of three and two amino acid residues of LRR domains forming hydrogen bonds (histidine, arginine and threonine) and salt bridges (arginine and lysine) with effectors. Whereas 14 and 20 amino acid residues of CaNBLRR78 and CaNBLRR20 showed hydrophobic interactions with 11 and 9 amino acid residues of effectors, Mg.00g064570.m01 and Mg.00g006570.m01, respectively. The present investigation gives a comprehensive overview of CaNBLRRs and paves the foundation for their utility in pearl millet resistance breeding through understanding of host-pathogen interactions.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    反向遗传学方法是基因组学中阐明基因功能的常用工具,涉及基因缺失等技术,然后筛选异常表型。如果基因缺失突变体的产生失败,问题是失败是源于技术问题还是因为感兴趣的基因(GOI)是必不可少的,这意味着删除会导致致命。在这份报告中,我们介绍了一种使用植物病原性子囊菌稻瘟病菌评估基因重要性的新方法。该方法基于在没有选择压力的培养过程中端粒载体在转化体中丢失的观察。我们测试了以下假设:可以在与端粒载体共转化的缺失突变体中鉴定必需基因。米曲霉基因MoPKC,在文献中被描述为必不可少的,被选为GOI。使用CRISPR/Cas9技术,产生具有删除的GOI的转化体,并由携带GOI拷贝并赋予fenhexamid抗性的端粒载体支持。基因组中GOI缺失未成功的转化体在没有fenhexamid的培养基上丢失了端粒载体。相比之下,即使没有fenhexamid选择,已确认GOI缺失的转化体仍保留端粒载体。在后一种情况下,端粒的维持表明GOI对真菌的监测至关重要,否则它就会丢失。当无法从基因缺失方法中获得突变体时,此处介绍的方法可以测试基因的重要性。从而扩大了子囊菌基因功能研究的工具箱。
    Reverse genetic approaches are common tools in genomics for elucidating gene functions, involving techniques such as gene deletion followed by screening for aberrant phenotypes. If the generation of gene deletion mutants fails, the question arises whether the failure stems from technical issues or because the gene of interest (GOI) is essential, meaning that the deletion causes lethality. In this report, we introduce a novel method for assessing gene essentiality using the phytopathogenic ascomycete Magnaporthe oryzae. The method is based on the observation that telomere vectors are lost in transformants during cultivation without selection pressure. We tested the hypothesis that essential genes can be identified in deletion mutants co-transformed with a telomere vector. The M. oryzae gene MoPKC, described in literature as essential, was chosen as GOI. Using CRISPR/Cas9 technology transformants with deleted GOI were generated and backed up by a telomere vector carrying a copy of the GOI and conferring fenhexamid resistance. Transformants in which the GOI deletion in the genome was not successful lost the telomere vector on media without fenhexamid. In contrast, transformants with confirmed GOI deletion retained the telomere vector even in absence of fenhexamid selection. In the latter case, the maintenance of the telomere indicates that the GOI is essential for the surveillance of the fungi, as it would have been lost otherwise. The method presented here allows to test for essentiality of genes when no mutants can be obtained from gene deletion approaches, thereby expanding the toolbox for studying gene function in ascomycetes.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    极化生长对于丝状植物病原体的发育至关重要,CHY型锌指蛋白Chy1调节微管组装以影响极化生长,从而影响植物感染。然而,Chy1同源物MoChy1在稻瘟病中的生物学作用仍然未知。我们在这里发现,MoChy1-GFP分布在菌丝中液泡外的细胞质中,并随着敷层的成熟而主要定位于液泡区室。Mochy1突变体显示出极其缓慢的生长速度,弯曲和分枝的菌丝体,减少分生孢子,和一个较小的尺寸在附着室。同时,Mochy1突变体对苯菌灵的敏感性增加,受损的微管细胞骨架,和菌丝中错位的极化体蛋白MoSpa2和几丁质合成酶MoChs6。与Guy11相比,Mochy1突变体对H2O2的敏感性增加,消除宿主衍生的ROS的能力受损,并减少了对宿主植物的渗透,导致Mochy1突变体的致病性大大降低。此外,Mochy1突变体在几丁质分布上也表现出缺陷,渗透胁迫耐受性,和附睾分化和真菌发育过程中的间隔环组织。与Guy11相比,Mochy1突变体中的非选择性自噬受到负调控。总之,MoChy1在米曲霉的真菌极性生长和全毒力中起着多种作用。
    Polarized growth is critical for the development of filamentous phytopathogens, and the CHY-type zinc finger protein Chy1 regulates microtubule assembly to influence polarized growth and thereby affect plant infections. However, the biological role of a Chy1 homolog MoChy1 remains unknown in Magnaporthe oryzae. We found here that the MoChy1-GFP was distributed in the cytoplasm outside the vacuole in hyphae and localized mainly to the vacuole compartments as the appressorium matured. The Mochy1 mutants showed an extremely slow growth rate, curved and branched mycelium, reduced conidiation, and a smaller size in the appressorium. Meanwhile, the Mochy1 mutants showed increased sensitivity to benomyl, damaged microtubule cytoskeleton, and mislocalized polarisome protein MoSpa2 and chitin synthase MoChs6 in hyphae. Compared to Guy11, the Mochy1 mutants exhibited increased sensitivity to H2O2, impaired ability to eliminate host-derived ROS and reduced penetration into host plants, resulting in a strong reduction in pathogenicity of Mochy1 mutants. Furthermore, the Mochy1 mutants also exhibited defects in chitin distribution, osmotic stress tolerance, and septin ring organization during appressorium differentiation and fungal development. Nonselective autophagy was negatively regulated in Mochy1 mutants compared to Guy11. In summary, MoChy1 plays multiple roles in fungal polar growth and full virulence of M. oryzae.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    植物原生质体,作为长期宿主-病原体相互作用的前线战场,拥有丰富的抗病资源。然而,在质外体中鉴定这些抗病蛋白是相对缺乏的。在这项研究中,我们确定了水稻分泌蛋白OsSSP1(水稻分泌小蛋白1)。OsSSP1蛋白可以分泌到植物质外体,水稻的体外处理和过表达都可以触发植物的免疫反应。在易感水稻TP309的稻瘟病菌感染过程中,OsSSP1的表达受到显着抑制,OsSSP1过表达的品系均对米曲霉表现出较强的抗性。结合敲除和过表达结果,我们发现OsSSP1在真菌感染时积极调节植物免疫。此外,由OsSSSP1触发的识别和免疫应答依赖于未表征的跨膜OsSSR1(分泌性小蛋白受体1)和关键的共受体OsBAK1,因为大多数诱导的免疫应答和抗性在OsSSR1或OsBAK1缺失的情况下丧失。此外,OsSSP1蛋白相对稳定,在开放环境中储存一周后仍能诱导植物抗性,外源OsSSP1处理2周不影响水稻产量。一起,我们的数据表明,在真菌感染期间,OsSSSP1蛋白被分泌到质外体中,并被质膜受体OsSSR1和OsBAK1接受,随后引发免疫反应以增强植物对米曲霉的抗性,为作物育种和绿色病虫害防治提供新的资源和线索。
    The plant apoplast, which serves as the frontline battleground for long-term host-pathogen interactions, harbors a wealth of disease resistance resources. However, the identification of the disease resistance proteins in the apoplast is relatively lacking. In this study, we identified and characterized the rice secretory protein OsSSP1 (Oryza sativa secretory small protein 1). OsSSP1 can be secreted into the plant apoplast, and either in vitro treatment of recombinant OsSSP1 or overexpression of OsSSP1 in rice could trigger plant immune response. The expression of OsSSP1 is suppressed significantly during Magnaporthe oryzae infection in the susceptible rice variety Taibei 309, and OsSSP1-overexpressing lines all show strong resistance to M. oryzae. Combining the knockout and overexpression results, we found that OsSSP1 positively regulates plant immunity in response to fungal infection. Moreover, the recognition and immune response triggered by OsSSP1 depend on an uncharacterized transmembrane OsSSR1 (secretory small protein receptor 1) and the key co-receptor OsBAK1, since most of the induced immune response and resistance are lost in the absence of OsSSR1 or OsBAK1. Intriguingly, the OsSSP1 protein is relatively stable and can still induce plant resistance after 1 week of storage in the open environment, and exogenous OsSSP1 treatment for a 2-week period did not affect rice yield. Collectively, our study reveals that OsSSP1 can be secreted into the apoplast and percepted by OsSSR1 and OsBAK1 during fungal infection, thereby triggering the immune response to enhance plant resistance to M. oryzae. These findings provide novel resources and potential strategies for crop breeding and disease control.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    尽管已经在各种植物中证明了宿主对生物营养和坏死病原体的抗性的拮抗作用,潜在的机制是未知的。这里,我们研究了水稻中转录因子乙烯-insensitive3-like3(OSEIL3)介导的拮抗抗性。Oseil3突变体赋予对枯萎病菌的抗性增强,但对半生物性稻瘟病菌和生物性稻黄单胞菌pv的敏感性更高。稻米.OsEIL3直接激活OsERF040转录,同时抑制OsWRKY28转录。Solani和米曲霉或Xoo的感染影响OsEIL3与OsWRKY28和OsERF040启动子的结合程度,导致水杨酸(SA)和茉莉酸(JA)依赖性途径的抑制或激活,并增强敏感性或抗性,分别。这些结果表明,植物对不同病原体类型的免疫的不同作用是由控制转录重编程的两个转录因子模块以及SA和JA途径决定的。
    Although the antagonistic effects of host resistance against biotrophic and necrotrophic pathogens have been documented in various plants, the underlying mechanisms are unknown. Here, we investigated the antagonistic resistance mediated by the transcription factor ETHYLENE-INSENSITIVE3-LIKE 3 (OsEIL3) in rice. The Oseil3 mutant confers enhanced resistance to the necrotroph Rhizoctonia solani but greater susceptibility to the hemibiotroph Magnaporthe oryzae and biotroph Xanthomonas oryzae pv. oryzae. OsEIL3 directly activates OsERF040 transcription while repressing OsWRKY28 transcription. The infection of R. solani and M. oryzae or Xoo influences the extent of binding of OsEIL3 to OsWRKY28 and OsERF040 promoters, resulting in the repression or activation of both salicylic acid (SA)- and jasmonic acid (JA)-dependent pathways and enhanced susceptibility or resistance, respectively. These results demonstrate that the distinct effects of plant immunity to different pathogen types are determined by two transcription factor modules that control transcriptional reprogramming and the SA and JA pathways.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号