Lichen transplants

  • 文章类型: Journal Article
    将磁性和化学生物监测方法应用于罗马PalatineHill考古区的南坡,意大利。在2022年7月至2023年6月之间分别对植物叶片和地衣移植进行了采样和暴露,以评估来自ViadeiCerchi的车辆颗粒物的影响,马希穆斯马戏团,朝帕拉蒂尼山的考古区走去.叶子和地衣的磁性,从磁化率推断,磁滞回线和一阶反转曲线,与微量元素的浓度相结合。证明了磁铁矿样颗粒的生物积累,与车辆排放物示踪剂相关,比如Ba和Sb,随着与道路的纵向距离而减小,没有任何重要的影响从地面的海拔。事实证明,地衣比树叶更有效地监测空气中的PM,无论植物种类如何。相反,截获并积累所有PM部分的叶子,包括道路灰尘和再悬浮的土壤颗粒。因此,植物叶子适合提供预防性保护服务,以限制颗粒物污染对繁忙大都市环境中文化遗产的影响。
    Magnetic and chemical biomonitoring methodologies were applied to the southern slopes of the Palatine Hill archaeological area in Rome, Italy. Plant leaves and lichen transplants were respectively sampled and exposed between July 2022 and June 2023 to assess the impact of vehicular particulate matter from Via dei Cerchi, a trafficked road coasting Circus Maximus, towards the archaeological area upon the Palatine Hill. The magnetic properties of leaves and lichens, inferred from magnetic susceptibility, hysteresis loops and first order reversal curves, were combined with the concentration of trace elements. It was demonstrated that the bioaccumulation of magnetite-like particles, associated with tracers of vehicular emissions, such as Ba and Sb, decreased with longitudinal distance from the road, without any important influence of elevation from the ground. Lichens demonstrated to be more efficient biomonitors of airborne PM than leaves, irrespective of the plant species. Conversely, leaves intercepted and accumulated all PM fractions, including road dusts and resuspended soil particles. Thus, plant leaves are suitable for providing preventive conservation services that limit the impact of particulate pollution on cultural heritage sites within busy metropolitan contexts.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    在VillaFarnesina应用了磁性生物监测方法,罗马,意大利文艺复兴时期的杰作,与著名艺术家如RaffaelloSanzio创作的loggias壁画。在2020年9月和12月对植物叶片进行了采样,从2020年10月至2021年1月初,地衣移植与主要交通道路的距离越来越远,LungotevereFarnesina,介绍户外vs.室内混合采样设计旨在评估车辆颗粒物(PM)对VillaLoggias的影响。叶子和地衣的磁性-从磁化率值推断,磁滞回线和一阶反转曲线-表明磁铁矿样颗粒的生物累积,与痕量金属如Cu相关,Ba和Sb,随着与道路的距离呈指数下降,主要与车辆制动磨损产生的金属排放有关。对于壁画大厅,CA.距离公路30米,交通相关排放的暴露非常有限或可以忽略不计。Lungotevere和别墅花园的树木和灌木叶拦截了许多交通来源的PM,从而能够保护室内文化遗产并提供基本的保护服务。结论是,磁和化学分析的联合使用可以有益地用于评估复杂大都市环境中颗粒污染对文化遗产的影响,作为一种预防性保护措施。
    Magnetic biomonitoring methodologies were applied at Villa Farnesina, Rome, a masterpiece of the Italian Renaissance, with loggias frescoed by renowned artists such as Raffaello Sanzio. Plant leaves were sampled in September and December 2020 and lichen transplants were exposed from October 2020 to early January 2021 at increasing distances from the main trafficked road, Lungotevere Farnesina, introducing an outdoor vs. indoor mixed sampling design aimed at assessing the impact of vehicular particulate matter (PM) on the Villa Loggias. The magnetic properties of leaves and lichens - inferred from magnetic susceptibility values, hysteresis loops and first order reversal curves - showed that the bioaccumulation of magnetite-like particles, associated with trace metals such as Cu, Ba and Sb, decreased exponentially with the distance from the road, and was mainly linked to metallic emission from vehicle brake abrasion. For the frescoed Halls, ca. 30 m from the road, the exposure to traffic-related emissions was very limited or negligible. Tree and shrub leaves of the Lungotevere and of the Villa\'s Gardens intercepted much traffic-derived PM, thus being able to protect the indoor cultural heritage and providing an essential conservation service. It is concluded that the joint use of magnetic and chemical analyses can profitably be used for evaluating the impact of particulate pollution on cultural heritage within complex metropolitan contexts as a preventive conservation measure.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    Spatial variation of the levels of polycyclic aromatic hydrocarbons (PAHs) was evaluated within an urban-industrial district where the main anthropogenic pressures are a 15 MW biomass power plant (BPP) and road traffic. The use of a high-density lichen transplant network and wind quantitative relationships made it possible to perform a hierarchical analysis of contamination. Combined uni-bi and multivariate statistical analyses of the resulting databases revealed a dual pattern. In its surroundings (local scale), the BPP affected the bioaccumulation of fluoranthene, pyrene and total PAHs, although a confounding effect of traffic (mostly petrol/gasoline engines) was evident. Spatial variation of the rate of diesel vehicles showed a significant association with that of acenaphthylene, acenaphthene, fluorene, anthracene and naphthalene. The series of high-speed wind values suggests that wind promotes diffusion rather than dispersion of the monitored PAHs. At the whole study area scale, the BPP was a source of acenaphthylene and acenaphthene, while diesel vehicles were a source of acenaphthylene. PAHs contamination strongly promotes oxidative stress (a threefold increase vs pre-exposure levels) in lichen transplants, suggesting a marked polluting effect of anthropogenic sources especially at the expense of the mycobiont. The proposed monitoring approach could improve the apportionment of the different contributions of point and linear anthropogenic sources of PAHs, mitigating the reciprocal biases affecting their spatial patterns.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    In bioaccumulation studies, sample devitalization through acid washing or oven drying is commonly applied to enhance the element accumulation efficiency of moss sample. Such aspect, however, has never been considered in biomonitoring surveys using lichens. In this study, the trace element accumulation performance of living (L) and dead (D) samples of the lichen Pseudevernia furfuracea was compared by a side-by-side transplanting at 40 sites in a large, mixed land use area of NE Italy for 8 weeks. Devitalization was achieved without any physico-chemical treatments, by storing lichen samples in a dark cool room for 18 months. Health status of lichens was assessed before and after the sample exposure by chlorophyll fluorescence emission. Although elemental analysis of the two exposed sample sets revealed a similar trace element pollution scenario, the content of 13 out of the 24 selected elements was higher in D samples. By expressing results as exposed-to-unexposed (EU) ratio, D samples show a higher bioaccumulation signal in 80% of transplant sites for Al, Ca, Fe, Hg, Pb and Ti. Overall, the health status of lichen samples might lead to interpretational discrepancies when EU ratio is classified according to the recently proposed bioaccumulation scale.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    The epiphytic lichen Pseudevernia furfuracea is widely used as biomonitor of airborne trace elements and other contaminants and consists of two taxonomic varieties (var. furfuracea and var. ceratea). Here, we assessed the occurrence of inter-varietal differences in the elemental composition of paired samples of var. furfuracea and var. ceratea collected in 20 remote sites of Italian mountains. The concentration of 40 elements was measured by inductively coupled plasma mass spectroscopy, after digestion with HNO3 and aqua regia. The magnitude of inter-varietal differences compared to the effect of large-scale site-dependent environmental factors (i.e., lithological substrate, host tree species, and altitude) on overall element content was explored by multivariate analysis techniques and tested by generalized linear mixed modeling (GLMM). Further GLMMs were separately fitted for each element testing taxonomic-related variability against uncertainty associated to the analytical procedure. Inter-varietal differences were statistically significant only for Hg and P, with higher content in var. ceratea at most sites, and for Mg and Zn, showing the opposite pattern. Since the elemental composition of P. furfuracea in remote sites was mostly affected by local lithology and climatic conditions, our results confirm that lichen material for active biomonitoring should be collected in a single ecologically homogeneous remote area. We also indicate sites in the Eastern Alps where P. furfuracea showed the minimum content of most elements, which are suggested as locations to collect lichen material for transplants. Besides the context-dependency at large spatial scale, variations of elemental composition apparently related to taxonomy, could possibly be due to unequal incidence of morphological traits of the collected material. Further research is needed to clarify this issue, and how it affects bioaccumulation phenomena.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    Lichen Usnea barbata transplants were tested as a biomonitor of atmospheric deposition in an apparently pristine environment that is Tierra del Fuego region (Patagonia, Argentina). The present survey is connected with the volcanic eruption that started in north Patagonia on June 4, 2011 from the Puyehue-Cordón Caulle volcano, Chile (north Patagonia, at 1700 km of distance of our sampling sites). Lichens were collected in September 2011 (one month of exposure) and September 2012 (1 year of exposure) in 27 sites covering the northern region of the province where trees are not present. The atmospheric deposition of 27 elements by using Neutron Activation Analysis (NAA) was determined in the collected samples. The first aim of the study was to evaluate the influence of the volcanic eruption on the regional atmospheric deposition comparing our results with baseline data we determined in U. barbata in 2006 in the same sites. The second aim was to test possible patterns of bioaccumulation between the two sampling campaigns after the volcanic eruption. With respect to 2006 baseline levels, we found significant higher levels for As, Ba, Co, Cr, Cs, Na, Sb and U in lichens collected after 1 month of exposure (first sampling campaign--2011). Between the two sampling campaigns (2011-2012) after the eruption, lichens reflected the natural contamination by volcanic ashes with significantly higher median levels of Br, Cr, Fe, K, Na, Sc, and Se. Results confirmed the very good aptitude of U. barbata to reflect the levels of elements in the environment at global scale and to reflect the volcanic emissions at distant places. Volcanic eruptions cause the emission in the atmosphere of elevated levels of particulate matter. In this regard, our findings demonstrate the importance to evaluate the metal composition of the particles to avoid possible health effects.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

公众号