LYSET

  • 文章类型: Journal Article
    病毒,尽管它们的结构组成简单,由于它们的寄生性质,它们与宿主进行错综复杂的相互作用。病毒行为的显着证明在于它们对溶酶体的利用,专门的细胞器负责生物分子的分解和外来物质的清除,来支持他们自己的复制。人鼻-6-磷酸(M6P)途径,对于促进水解酶正确运输到溶酶体和促进溶酶体成熟至关重要,经常被用于支持复制的病毒操作。最近,溶酶体酶运输因子(LYSET)作为溶酶体M6P途径中的关键调节因子的发现,为病毒进入与宿主因子之间的复杂相互作用提供了新的视角。这一开创性的启示阐明了这些互动的未探索的维度。在这次审查中,我们致力于全面概述M6P通路及其在感染过程中与病毒因子的复杂相互作用.通过巩固目前在这一领域的认识,我们的目标是为开发选择性靶向M6P通路的抗病毒药物提供有价值的参考。
    Viruses, despite their simple structural composition, engage in intricate and complex interactions with their hosts due to their parasitic nature. A notable demonstration of viral behavior lies in their exploitation of lysosomes, specialized organelles responsible for the breakdown of biomolecules and clearance of foreign substances, to bolster their own replication. The man-nose-6-phosphate (M6P) pathway, crucial for facilitating the proper transport of hydrolases into lysosomes and promoting lysosome maturation, is frequently exploited for viral manipulation in support of replication. Recently, the discovery of lysosomal enzyme trafficking factor (LYSET) as a pivotal regulator within the lysosomal M6P pathway has introduced a fresh perspective on the intricate interplay between viral entry and host factors. This groundbreaking revelation illuminates unexplored dimensions of these interactions. In this review, we endeavor to provide a thorough overview of the M6P pathway and its intricate interplay with viral factors during infection. By consolidating the current understanding in this field, our objective is to establish a valuable reference for the development of antiviral drugs that selectively target the M6P pathway.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    溶酶体降解和回收通过生物合成传递的大分子,内吞,和自噬路线。不同类型的大分子的水解由约70种可溶性酶催化,这些酶在甘露糖6-磷酸(M6P)依赖性过程中从高尔基体转运到溶酶体。产生用于受体介导的溶酶体酶靶向的M6P标签的分子机制被认为是详细理解的。然而,最近对M6P途径的研究已经确定了一个以前未表征的核心成分,在已知组件中产生了结构见解,并揭示了各种人类疾病的功能。在这里,我们回顾了溶酶体酶运输的分子机制,并讨论了其与罕见溶酶体疾病的相关性。癌症,和病毒感染。
    Lysosomes degrade and recycle macromolecules that are delivered through the biosynthetic, endocytic, and autophagic routes. Hydrolysis of the different classes of macromolecules is catalyzed by about 70 soluble enzymes that are transported from the Golgi apparatus to lysosomes in a mannose 6-phosphate (M6P)-dependent process. The molecular machinery that generates M6P tags for receptor-mediated targeting of lysosomal enzymes was thought to be understood in detail. However, recent studies on the M6P pathway have identified a previously uncharacterized core component, yielded structural insights in known components, and uncovered functions in various human diseases. Here we review molecular mechanisms of lysosomal enzyme trafficking and discuss its relevance for rare lysosomal disorders, cancer, and viral infection.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号