LDL receptor-related protein

  • 文章类型: Journal Article
    携带ApoE4等位基因是晚发性阿尔茨海默病(AD)最重要的遗传风险因素之一。关于ApoE4蛋白的功能,包括CNS中的胆固醇转运以及在清除AD脑中的β-淀粉样蛋白沉积物中的关键作用,人们已经知道很多。然而,最近的研究表明,核定位表明了超越ApoE4经典已知作用的新功能。本综述的目的是研究这种分泌的蛋白质如何流向细胞核,并讨论CNS中核定位的可能结果。建议ApoE4的蛋白水解片段化是导致核定位的关键步骤,该事件的结果是启动与炎症和细胞死亡有关的各种基因的转录。因此,核定位和基因表达的诱导可能提供了携带ApoE4等位基因与AD中观察到的痴呆风险增加之间的联系.
    One of the most important genetic risk factors for late-onset Alzheimer\'s Disease (AD) is harboring the ApoE4 allele. Much is known regarding the functions of the ApoE4 protein including cholesterol transport in the CNS and a critical role in clearing beta-amyloid deposits in the AD brain. However, recent studies demonstrating the nuclear localization suggest a novel function beyond the classical known actions of ApoE4. The purpose of the current review is to examine how this secreted protein traffics to the nucleus and to discuss possible outcomes of nuclear localization in the CNS. It is suggested that proteolytic fragmentation of ApoE4 is a key step leading to nuclear localization and the outcome of this event is to initiate transcription of various genes involved in inflammation and cell death. Therefore, the nuclear localization and induction of gene expression may provide a link between harboring the ApoE4 allele and enhanced dementia risk observed in AD.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    This review focuses on remnant cholesterol as a causal risk factor for ischemic heart disease (IHD), on its definition, measurement, atherogenicity, and levels in high risk patient groups; in addition, present and future pharmacological approaches to lowering remnant cholesterol levels are considered. Observational studies show association between elevated levels of remnant cholesterol and increased risk of cardiovascular disease, even when remnant cholesterol levels are defined, measured, or calculated in different ways. In-vitro and animal studies also support the contention that elevated levels of remnant cholesterol may cause atherosclerosis same way as elevated levels of low-density lipoprotein (LDL) cholesterol, by cholesterol accumulation in the arterial wall. Genetic studies of variants associated with elevated remnant cholesterol levels show that an increment of 1mmol/L (39mg/dL) in levels of nonfasting remnant cholesterol associates with a 2.8-fold increased risk of IHD, independently of high-density lipoprotein cholesterol levels. Results from genetic studies also show that elevated levels of remnant cholesterol are causally associated with both low-grade inflammation and IHD. However, elevated levels of LDL cholesterol are associated with IHD, but not with low-grade inflammation. Such results indicate that elevated LDL cholesterol levels cause atherosclerosis without a major inflammatory component, whereas an inflammatory component of atherosclerosis is driven by elevated remnant cholesterol levels. Post-hoc subgroup analyses of randomized trials using fibrates in individuals with elevated triglyceride levels, elevated remnant cholesterol levels, show a benefit of lowering triglycerides or remnant cholesterol levels; however, large randomized trials with the primary target of lowering remnant cholesterol levels are still missing.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    Complement is undeniably quintessential for innate immunity by detecting and eliminating infectious microorganisms. Recent work, however, highlights an equally profound impact of complement on the induction and regulation of a wide range of immune cells. In particular, the complement regulator CD46 emerges as a key sensor of immune activation and a vital modulator of adaptive immunity. In this review, we summarize the current knowledge of CD46-mediated signalling events and their functional consequences on immune-competent cells with a specific focus on those in CD4(+) T cells. We will also discuss the promises and challenges that potential therapeutic modulation of CD46 may hold and pose.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    Metachromatic leukodystrophy (MLD) is a severe, neurodegenerative, metabolic disease which is caused by deficient activity of arylsulfatase A (ARSA). Sulfatides and other substrates of ARSA are stored in central and peripheral nervous systems, and in some other organs. Accumulated sulfatides are especially toxic to oligodendrocytes and Schwann cells leading to progressive demyelination. The kind of apolipoprotein E (apoE) isoform is of essential significance for the modulation of sulfatide quantity in the brain as apoE4 contains more sulfatides than apoE3. Taking into consideration the fact that apoE4 leads to the loss of sulfatides in CSF of Alzheimer\'s disease patients, we examined if apoE isoforms display any impact on clinical outcome in patients with different forms of MLD in whom sulfatides accumulate. The significant association of age at the onset of MLD symptoms with APOE ε2/ε3/ε4 and LRP1 c.766C>T polymorphisms was shown in multivariate stepwise regression analysis, in which other factors known to affect age at onset of the disease, i.e. clinical type of MLD, family connection of the patient and sex were also analyzed. As expected, the clinical type of MLD explained about 80% of the variance of the dependent variable. The impact of both polymorphisms on age of onset of the disease was considerably lower: 2.0% in the case of APOE polymorphism and 1.0% in the case of LRP1 polymorphism. Thus, the clinical outcome in MLD patients is related principally to the genotype of the ARSA gene, while the polymorphisms in the APOE and LRP1 genes are only slightly modifying factors.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号