Kinetochores

Kinetochores
  • 文章类型: Journal Article
    The localization of the meiotic specific regulatory molecule Moa1 to the centromere is regulated by the kinetochore protein CENP-C, and participates in the cohesion of sister chromatids in the centromere region mediated by the cohesin Rec8. To examine the interaction of these proteins, we analyzed the interactions between Moa1 and Rec8, CENP-C by yeast two-hybrid assays and identified several amino acid residues in Moa1 required for the interaction with CENP-C and Rec8. The results revealed that the interaction between Moa1 and CENP-C is crucial for the Moa1 to participate in the regulation of monopolar attachment of sister kinetochores. However, mutation at S143 and T150 of Moa1, which are required for interaction with Rec8 in the two-hybrid assay, did not show significant defects. Mutations in amino acid residues may not be sufficient to interfere with the interaction between Moa1 and Rec8 in vivo. Further research is needed to determine the interaction domain between Moa1 and Rec8. This study revealed specific amino acid sites at which Moa1 affects the meiotic homologous chromosome segregation, providing a deeper understanding of the mechanism of meiotic chromosome segregation.
    减数分裂特异性调控分子Moa1定位到着丝粒受到动粒蛋白CENP-C的调控,同时Moa1参与黏连蛋白Rec8介导的着丝粒区域姐妹染色单体的黏连。为了研究这些蛋白质之间的相互作用,本研究利用酵母双杂交实验(yeast two-hybrid assay)测定分析了Moa1和CENP-C、Rec8之间的相互作用,并通过在Moa1中定点突变鉴定了与CENP-C和Rec8相互作用所需的一些氨基酸残基。实验结果表明,Moa1和CENP-C的相互作用对于Moa1参与调节姐妹动粒的单极附着很重要。然而,双杂交实验中与Rec8相互作用所需的Moa1的S143和T150突变没有显示出Moa1或Rec8功能的显著缺陷。这表明氨基酸残基的突变可能不足以干扰体内Moa1和Rec8之间的相互作用,需要进一步的研究来确定Moa1和Rec8的相互作用域。本研究揭示了影响减数分裂同源染色体分离的Moa1氨基酸位点,为减数分裂的染色体分离机制提供更深入的理解。.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    全基因组复制(WGD)后,四倍体细胞可以进行多极有丝分裂或具有簇状中心体的假双极有丝分裂。驱动蛋白在调节纺锤体形成中起着至关重要的作用。然而,在WGD后观察到的不同细胞系中,驱动蛋白表达水平对中心体聚集异质性的影响尚不清楚.我们确定了两个细胞系亚群:“BP”细胞有效地聚集了假双极有丝分裂的额外中心体,和“MP”细胞在WGD后主要经历多极有丝分裂。与BP细胞相比,二倍体MP细胞含有更高水平的KIF11和KIF15,并且对KIF11抑制剂诱导的中心体聚集的敏感性降低。此外,WGD后KIF11的部分抑制或KIF15的消耗将MP细胞从多极有丝分裂转化为双极有丝分裂。多极纺锤体的形成涉及微管,但与动粒-微管附着无关。沉默KIFC1,而不是KIFC3,促进BP细胞的多极有丝分裂,表明特定驱动蛋白-14家族成员参与抵抗WGD后来自KIF11/KIF15的力量。这些发现强调了KIF11,KIF15和KIFC1在确定WGD后有丝分裂纺锤体极性中的集体作用。
    After whole-genome duplication (WGD), tetraploid cells can undergo multipolar mitosis or pseudo-bipolar mitosis with clustered centrosomes. Kinesins play a crucial role in regulating spindle formation. However, the contribution of kinesin expression levels to the heterogeneity in centrosome clustering observed across different cell lines after WGD remains unclear. We identified two subsets of cell lines: \"BP\" cells efficiently cluster extra centrosomes for pseudo-bipolar mitosis, and \"MP\" cells primarily undergo multipolar mitosis after WGD. Diploid MP cells contained higher levels of KIF11 and KIF15 compared with BP cells and showed reduced sensitivity to centrosome clustering induced by KIF11 inhibitors. Moreover, partial inhibition of KIF11 or depletion of KIF15 converted MP cells from multipolar to bipolar mitosis after WGD. Multipolar spindle formation involved microtubules but was independent of kinetochore-microtubule attachment. Silencing KIFC1, but not KIFC3, promoted multipolar mitosis in BP cells, indicating the involvement of specific kinesin-14 family members in counteracting the forces from KIF11/KIF15 after WGD. These findings highlight the collective role of KIF11, KIF15, and KIFC1 in determining the polarity of the mitotic spindle after WGD.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    除了复制组蛋白,真核基因组编码一系列非复制型变异型组蛋白,提供额外的结构和表观遗传调控层。这里,我们使用酵母中的组蛋白替代系统,用非复制型人变异型组蛋白系统地替代个体复制型人组蛋白。我们显示变体H2A。J,TsH2B,和H3.5补充各自的复制对应物。然而,macroH2A1未能补充,它的过度表达在酵母中是有毒的,与酵母的天然组蛋白和动粒基因负向相互作用。为了分离具有大H2A1染色质的酵母,我们解开它的宏观和组蛋白折叠域的影响,揭示这两个域都足以覆盖天然核小体定位。此外,macroH2A1的两个未偶联构建体都表现出较低的核小体占有率,短程染色质相互作用减少(<20kb),中断的着丝粒聚类,增加了染色体的不稳定性.我们的观察结果表明,缺乏典型的组蛋白H2A会极大地改变酵母中的染色质组织,导致基因组不稳定和实质性的适应性缺陷。
    In addition to replicative histones, eukaryotic genomes encode a repertoire of non-replicative variant histones, providing additional layers of structural and epigenetic regulation. Here, we systematically replace individual replicative human histones with non-replicative human variant histones using a histone replacement system in yeast. We show that variants H2A.J, TsH2B, and H3.5 complement their respective replicative counterparts. However, macroH2A1 fails to complement, and its overexpression is toxic in yeast, negatively interacting with yeast\'s native histones and kinetochore genes. To isolate yeast with macroH2A1 chromatin, we uncouple the effects of its macro and histone fold domains, revealing that both domains suffice to override native nucleosome positioning. Furthermore, both uncoupled constructs of macroH2A1 exhibit lower nucleosome occupancy, decreased short-range chromatin interactions (<20 kb), disrupted centromeric clustering, and increased chromosome instability. Our observations demonstrate that lack of a canonical histone H2A dramatically alters chromatin organization in yeast, leading to genome instability and substantial fitness defects.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    蛋白质的14-3-3家族在真核生物中是保守的,并且具有细胞的无数重要调节功能。这些蛋白质同源物的同源/异二聚体,主要通过保守基序识别它们的配体,以调节这些效应子配体的定位和功能。在酿酒酵母的大多数遗传背景中,14-3-3同源物(Bmh1和Bmh2)的破坏要么致命,要么具有严重的生长缺陷,显示出严重的染色体误分离和延长的细胞周期停滞。为了阐明它们对染色体分离的贡献,在这项工作中,我们研究了它们与着丝粒/动粒相关的功能。对适当的缺失突变体的分析表明,Bmh同种型在维持动粒集合的适当完整性方面具有累积和未共享的同种型特异性贡献。因此,bmh突变细胞在动粒-微管(KT-MT)动力学中表现出扰动,其特征是动粒去细胞,动粒蛋白的错误定位,和Mad2介导的短暂G2/M阻滞。这些缺陷还导致中期bmh突变体的异步染色体拥塞。总之,本报告通过证明出芽酵母14-3-3蛋白在动粒完整性和染色体拥挤中的作用,提高了对染色体分离的贡献的认识。
    The 14-3-3 family of proteins are conserved across eukaryotes and serve myriad important regulatory functions in the cell. Homo- and hetero-dimers of these proteins mainly recognize their ligands via conserved motifs to modulate the localization and functions of those effector ligands. In most of the genetic backgrounds of Saccharomyces cerevisiae, disruption of both 14-3-3 homologs (Bmh1 and Bmh2) are either lethal or cells survive with severe growth defects, including gross chromosomal missegregation and prolonged cell cycle arrest. To elucidate their contributions to chromosome segregation, in this work, we investigated their centromere- and kinetochore-related functions of Bmh1 and Bmh2. Analysis of appropriate deletion mutants shows that Bmh isoforms have cumulative and non-shared isoform-specific contributions in maintaining the proper integrity of the kinetochore ensemble. Consequently, Bmh mutant cells exhibited perturbations in kinetochore-microtubule (KT-MT) dynamics, characterized by kinetochore declustering, mis-localization of kinetochore proteins and Mad2-mediated transient G2/M arrest. These defects also caused an asynchronous chromosome congression in bmh mutants during metaphase. In summary, this report advances the knowledge on contributions of budding yeast 14-3-3 proteins in chromosome segregation by demonstrating their roles in kinetochore integrity and chromosome congression.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    恶性疟原虫是疟疾的病原体,仍然是全球重要的病原体。无性血液阶段复制,通过一个叫做分裂的过程,是新型抗疟药物研发的重要靶点。在这里,我们使用超微结构扩展显微镜来探测与有丝分裂纺锤体相关的捕获染色体的组织,中心性斑块,裂殖体发育过程中的中心粒和顶端细胞器。运动细胞成分的有条件破坏,PfNDC80和PfNuf2与异常有丝分裂纺锤体组织有关,着丝粒标记的破坏,CENH3和核动力受损。令人惊讶的是,动粒的破坏也会导致中心体等效物从核壳中脱离。切断核与顶端复合体之间的连接会导致缺乏核的裂殖子的形成。这里,我们表明,动粒/纺锤体复合物的正确组装在发育中的恶性疟原虫裂殖子中定位新生的顶端复合物中起着以前未被认可的作用。
    Plasmodium falciparum is the causative agent of malaria and remains a pathogen of global importance. Asexual blood stage replication, via a process called schizogony, is an important target for the development of new antimalarials. Here we use ultrastructure-expansion microscopy to probe the organisation of the chromosome-capturing kinetochores in relation to the mitotic spindle, the centriolar plaque, the centromeres and the apical organelles during schizont development. Conditional disruption of the kinetochore components, PfNDC80 and PfNuf2, is associated with aberrant mitotic spindle organisation, disruption of the centromere marker, CENH3 and impaired karyokinesis. Surprisingly, kinetochore disruption also leads to disengagement of the centrosome equivalent from the nuclear envelope. Severing the connection between the nucleus and the apical complex leads to the formation of merozoites lacking nuclei. Here, we show that correct assembly of the kinetochore/spindle complex plays a previously unrecognised role in positioning the nascent apical complex in developing P. falciparum merozoites.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    着丝粒是专门的染色体结构域,在细胞分裂过程中,动子会在其中组装,以确保将遗传信息准确传递给两个子细胞。着丝粒功能是进化保守的,在大多数生物中,着丝粒在表观遗传学上由含有组蛋白H3变体CENP-A的独特染色质定义。CENP-A组装和维护的规范调节器是众所周知的,然而,调节这一复杂过程的一些分子机制直到最近才被揭露。我们回顾了该主题的最新进展,包括出现有利于和规范CENP-A组装和/或维护的新的和意外的因素。
    Centromeres are specialized chromosomal domains where the kinetochores assemble during cell division to ensure accurate transmission of the genetic information to the two daughter cells. The centromeric function is evolutionary conserved and, in most organisms, centromeres are epigenetically defined by a unique chromatin containing the histone H3 variant CENP-A. The canonical regulators of CENP-A assembly and maintenance are well-known, yet some of the molecular mechanisms regulating this complex process have only recently been unveiled. We review the most recent advances on the topic, including the emergence of new and unexpected factors that favor and regulate CENP-A assembly and/or maintenance.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    生殖系中染色体动力学的精确调节对于跨物种的繁殖成功至关重要。然而,许多物种尚未完全了解减数分裂染色体事件的潜在机制,例如同源配对和染色体分离。这里,我们使用OligopaintDNAFISH来研究全中心食品蛾减数分裂同源配对和染色体分离的机制,普洛迪亚穿孔虫,并将我们的发现与蚕蛾的新研究和以前的研究进行比较,家蚕,与1亿年前的P.interpunctella不同。我们发现,Bombyx和Plodia精子发生的配对都是在富含基因的染色体末端开始的。此外,这两个物种在中期I形成杆状十字形二价体。然而,与在家蚕中观察到的以端粒为导向的染色体分离机制不同,Plodia可以在中期I以多种不同的方式定向二价。令人惊讶的是,在这两个物种中,我们发现动子在非端粒基因座上始终向染色体中心组装,而无论染色体中心位于二价中的何处。此外,姐妹kinetochores似乎在这些物种中没有配对。相反,尽管如此,在中期I很容易观察到四个不同的动子,我们发现了清晰的末端微管附件,而不是将这些分离的动体连接到减数分裂纺锤体的外侧微管附件。这些发现挑战了配对的经典隔离观点,减数分裂中准确的同源分离需要面向极点的动体I。我们在这里的研究强调了在非模型系统中探索基本过程的重要性,因为使用新的生物体可以导致新生物学的发现。
    Precise regulation of chromosome dynamics in the germline is essential for reproductive success across species. Yet, the mechanisms underlying meiotic chromosomal events such as homolog pairing and chromosome segregation are not fully understood in many species. Here, we employ Oligopaint DNA FISH to investigate mechanisms of meiotic homolog pairing and chromosome segregation in the holocentric pantry moth, Plodia interpunctella, and compare our findings to new and previous studies in the silkworm moth, Bombyx mori, which diverged from P. interpunctella over 100 million years ago. We find that pairing in both Bombyx and Plodia spermatogenesis is initiated at gene-rich chromosome ends. Additionally, both species form rod shaped cruciform-like bivalents at metaphase I. However, unlike the telomere-oriented chromosome segregation mechanism observed in Bombyx, Plodia can orient bivalents in multiple different ways at metaphase I. Surprisingly, in both species we find that kinetochores consistently assemble at non-telomeric loci toward the center of chromosomes regardless of where chromosome centers are located in the bivalent. Additionally, sister kinetochores do not seem to be paired in these species. Instead, four distinct kinetochores are easily observed at metaphase I. Despite this, we find clear end-on microtubule attachments and not lateral microtubule attachments co-orienting these separated kinetochores. These findings challenge the classical view of segregation where paired, poleward-facing kinetochores are required for accurate homolog separation in meiosis I. Our studies here highlight the importance of exploring fundamental processes in non-model systems, as employing novel organisms can lead to the discovery of novel biology.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    Kif16A,运动蛋白驱动蛋白-3家族的成员,已被证明在诱导有丝分裂阻滞中起关键作用,凋亡,有丝分裂细胞死亡。然而,其在卵母细胞减数分裂成熟过程中的作用尚未完全确定。在这项研究中,我们报告说,Kif16A在纺锤体上表现出独特的积累,并在小鼠卵母细胞减数分裂成熟期间与微管纤维共定位。使用基因靶向siRNA的Kif16A的靶向消耗破坏减数分裂细胞周期的进程。此外,Kif16A耗竭导致卵母细胞中异常纺锤体组装和染色体错位。我们的发现还表明,Kif16A耗竭降低了微管蛋白乙酰化水平,并损害了微管对解聚药物的抗性。表明其在维持微管稳定性中的关键作用。值得注意的是,我们发现Kif16A的耗尽导致有缺陷的动子-微管附着的发生率显着升高,并且在动子上没有BubR1定位。提示Kif16A在激活主轴组件检查点(SAC)活动中的关键作用。此外,我们观察到Kif16A对于适当的肌动蛋白丝分布是必不可少的,从而影响主轴迁移。总之,我们的发现表明,Kif16A在调节微管和肌动蛋白动力学中起关键作用,这对于确保小鼠卵母细胞减数分裂成熟过程中的纺锤体组装和迁移至关重要。
    Kif16A, a member of the kinesin-3 family of motor proteins, has been shown to play crucial roles in inducing mitotic arrest, apoptosis, and mitotic cell death. However, its roles during oocyte meiotic maturation have not been fully defined. In this study, we report that Kif16A exhibits unique accumulation on the spindle apparatus and colocalizes with microtubule fibers during mouse oocyte meiotic maturation. Targeted depletion of Kif16A using gene-targeting siRNA disrupts the progression of the meiotic cell cycle. Furthermore, Kif16A depletion leads to aberrant spindle assembly and chromosome misalignment in oocytes. Our findings also indicate that Kif16A depletion reduces tubulin acetylation levels and compromises microtubule resistance to depolymerizing drugs, suggesting its crucial role in microtubule stability maintenance. Notably, we find that the depletion of Kif16A results in a notably elevated incidence of defective kinetochore-microtubule attachments and the absence of BubR1 localization at kinetochores, suggesting a critical role for Kif16A in the activation of the spindle assembly checkpoint (SAC) activity. Additionally, we observe that Kif16A is indispensable for proper actin filament distribution, thereby impacting spindle migration. In summary, our findings demonstrate that Kif16A plays a pivotal role in regulating microtubule and actin dynamics crucial for ensuring both spindle assembly and migration during mouse oocyte meiotic maturation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    纠错是许多生物系统的核心,对蛋白质功能和细胞健康至关重要。在有丝分裂期间,遗传物质的忠实遗传需要纠错。当功能正常时,有丝分裂纺锤体以高保真度将相等数量的染色体分离到子细胞。在主轴装配过程中,动静脉和微管之间的许多最初错误的附件是通过纠错过程固定的。尽管染色体分离错误在癌症和其他疾病中很重要,缺乏描述纠错动态以及它如何出错的方法。这里,我们提出了一种实验方法和分析框架,以量化人组织培养细胞中的染色体分离误差校正与活细胞共聚焦成像,定时早搏后期,细胞分裂后动静脉的自动计数。我们发现,在主轴装配过程中,误差会随着时间的推移而呈指数级下降。一个粗粒度的模型,其中错误以恒定的速率以染色体自主的方式得到纠正,可以定量解释测量的误差校正动态和后期开始时间的分布。我们使用扰动进一步验证了我们的模型,这些扰动使微管不稳定并改变了染色体附件的初始配置。一起来看,这项工作为理解有丝分裂误差校正的动力学提供了一个定量框架。
    Error correction is central to many biological systems and is critical for protein function and cell health. During mitosis, error correction is required for the faithful inheritance of genetic material. When functioning properly, the mitotic spindle segregates an equal number of chromosomes to daughter cells with high fidelity. Over the course of spindle assembly, many initially erroneous attachments between kinetochores and microtubules are fixed through the process of error correction. Despite the importance of chromosome segregation errors in cancer and other diseases, there is a lack of methods to characterize the dynamics of error correction and how it can go wrong. Here, we present an experimental method and analysis framework to quantify chromosome segregation error correction in human tissue culture cells with live cell confocal imaging, timed premature anaphase, and automated counting of kinetochores after cell division. We find that errors decrease exponentially over time during spindle assembly. A coarse-grained model, in which errors are corrected in a chromosome-autonomous manner at a constant rate, can quantitatively explain both the measured error correction dynamics and the distribution of anaphase onset times. We further validated our model using perturbations that destabilized microtubules and changed the initial configuration of chromosomal attachments. Taken together, this work provides a quantitative framework for understanding the dynamics of mitotic error correction.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    减数分裂I的减数分裂需要将染色体对朝着相反的两极分离。我们以前曾暗示外动粒蛋白SPC105R/KNL1通过侧向附着到微管和姐妹着丝粒的共同取向来驱动减数分裂I染色体分离。为了鉴定对减数分裂染色体分离至关重要的SPC105R结构域,开发了RNAi抗性基因表达系统。我们发现,SPC105RC末端域(aa1284-1960)对于将NDC80招募到动粒并构建外部动粒是必要且足够的。此外,C端结构域招募BUBR1,进而招募内聚保护蛋白MEI-S332和PP2A。剩下的1283个氨基酸,我们发现前473对减数分裂最重要。SPC105RN末端一半的前123个氨基酸包含保守的SLRK和RSF基序,它们是PP1和AuroraB激酶的靶标,对于调节微管附着的稳定性和维持中期I阻滞最重要。氨基酸124和473之间的区域是侧向微管附着和同源物的双向所必需的,这对于减数分裂中准确的染色体分离至关重要I.
    The reductional division of meiosis I requires the separation of chromosome pairs towards opposite poles. We have previously implicated the outer kinetochore protein SPC105R/KNL1 in driving meiosis I chromosome segregation through lateral attachments to microtubules and coorientation of sister centromeres. To identify the domains of SPC105R that are critical for meiotic chromosome segregation, an RNAi-resistant gene expression system was developed. We found that the SPC105R C-terminal domain (aa 1284-1960) is necessary and sufficient for recruiting NDC80 to the kinetochore and building the outer kinetochore. Furthermore, the C-terminal domain recruits BUBR1, which in turn recruits the cohesion protection proteins MEI-S332 and PP2A. Of the remaining 1283 amino acids, we found the first 473 are most important for meiosis. The first 123 amino acids of the N-terminal half of SPC105R contain the conserved SLRK and RISF motifs that are targets of PP1 and Aurora B kinase and are most important for regulating the stability of microtubule attachments and maintaining metaphase I arrest. The region between amino acids 124 and 473 are required for lateral microtubule attachments and biorientation of homologues, which are critical for accurate chromosome segregation in meiosis I.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号