Kinesin-13

驱动蛋白 - 13
  • 文章类型: Journal Article
    有丝分裂着丝粒相关驱动蛋白(MCAK)运动蛋白是驱动蛋白-13家族的典型成员,可以从正端和负端解聚微管。MCAK电机的关键问题是它如何执行解聚酶活性。为了解决这个问题,这里介绍了MCAK电机在微管上移动并解聚微管的途径。在路径的基础上,从理论上研究了野生型和突变型MCAK电机的动力学,其中包括全长MCAK,在运动结构域的α4螺旋中具有突变的全长MCAK,颈部中和的突变体全长MCAK,单体MCAK和具有中和颈部的突变型单体MCAK。研究表明,单个二聚体MCAK马达可以以渐进的方式解聚微管,每次去除一个微管蛋白或两个微管蛋白。理论结果与可用的实验数据一致。此外,提供了预测结果。
    Mitotic centromere-associated kinesin (MCAK) motor protein is a typical member of the kinesin-13 family, which can depolymerize microtubules from both plus and minus ends. A critical issue for the MCAK motor is how it performs the depolymerase activity. To address the issue, the pathway of the MCAK motor moving on microtubules and depolymerizing the microtubules is presented here. On the basis of the pathway, the dynamics of both the wild-type and mutant MCAK motors is studied theoretically, which include the full-length MCAK, the full-length MCAK with mutations in the α4-helix of the motor domain, the mutant full-length MCAK with a neutralized neck, the monomeric MCAK and the mutant monomeric MCAK with a neutralized neck. The studies show that a single dimeric MCAK motor can depolymerize microtubules in a processive manner, with either one tubulin or two tubulins being removed per times. The theoretical results are in agreement with the available experimental data. Moreover, predicted results are provided.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    二聚体驱动蛋白-8马达具有从正端解聚微管(MT)的生物学功能。然而,kinesin-8电机促进解聚的分子机制仍不确定。这里,提出了用kinesin-8电机进行MT解聚的模型。基于模型,从理论上研究了在空载和电动机负载下,在MT加端存在单个电动机的情况下的解聚动力学。还分析了在MT加端存在多个电机的情况下的解聚动力学。理论结果很好地解释了可用的实验数据。这些研究也可以适用于其他家族的驱动蛋白马达,例如驱动蛋白-13有丝分裂着丝粒相关的驱动蛋白马达,它们具有解聚MT的能力。
    The dimeric kinesin-8 motors have the biological function of depolymerizing microtubules (MTs) from the plus end. However, the molecular mechanism of the depolymerization promoted by the kinesin-8 motors is still undetermined. Here, a model is proposed for the MT depolymerization by the kinesin-8 motors. Based on the model, the dynamics of depolymerization in the presence of the single motor at the MT plus end under no load and under load on the motor is studied theoretically. The dynamics of depolymerization in the presence of multiple motors at the MT plus end is also analyzed. The theoretical results explain well the available experimental data. The studies can also be applicable to other families of kinesin motors such as kinesin-13 mitotic centromere-associated kinesin motors that have the ability to depolymerize MTs.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    驱动蛋白的活性主要由大约350个残基的运动结构域决定,仅此区域就足以将驱动蛋白分类为特定家族的成员。驱动蛋白13家族是一组微管解聚驱动蛋白,是微管长度的重要调节剂。Kinesin-13对于有丝分裂和减数分裂细胞分裂中的纺锤体组装和染色体分离至关重要,并且在纤毛长度控制和神经元发育中起关键作用。为了更好地了解微管解聚活性的演变,我们创造了一个合成的祖先驱动蛋白-13运动域。这种系统发育推断的祖先运动结构域是预测存在于驱动蛋白13家族的共同祖先中的序列。在这里,我们表明,祖先驱动蛋白13的运动解聚稳定的微管比以前测试的任何解聚酶都要快。这种有效的活性比研究最多的驱动蛋白13,MCAK快一个数量级,并且允许祖先的驱动蛋白13解聚双重稳定的微管并引起微管内的内部断裂。这些数据表明,驱动蛋白13家族的祖先是“超级解聚剂”,而驱动蛋白13家族的成员已经从这种极端的解聚活性中进化出来,从而在现有细胞中提供了更受控的微管解聚活性。
    The activity of a kinesin is largely determined by the approximately 350 residue motor domain, and this region alone is sufficient to classify a kinesin as a member of a particular family. The kinesin-13 family are a group of microtubule depolymerizing kinesins and are vital regulators of microtubule length. Kinesin-13s are critical to spindle assembly and chromosome segregation in both mitotic and meiotic cell division and play crucial roles in cilium length control and neuronal development. To better understand the evolution of microtubule depolymerization activity, we created a synthetic ancestral kinesin-13 motor domain. This phylogenetically inferred ancestral motor domain is the sequence predicted to have existed in the common ancestor of the kinesin-13 family. Here we show that the ancestral kinesin-13 motor depolymerizes stabilized microtubules faster than any previously tested depolymerase. This potent activity is more than an order of magnitude faster than the most highly studied kinesin-13, MCAK and allows the ancestral kinesin-13 to depolymerize doubly stabilized microtubules and cause internal breaks within microtubules. These data suggest that the ancestor of the kinesin-13 family was a \'super depolymerizer\' and that members of the kinesin-13 family have evolved away from this extreme depolymerizing activity to provide more controlled microtubule depolymerization activity in extant cells.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    WNT信号通过β-连环蛋白依赖性转录调节细胞周期进程和命运决定,它的错误调控通常与肿瘤发生有关。我们最近的工作表明,通过调节驱动蛋白家族成员2A(KIF2A),还需要基础WNT活性来确保有丝分裂期间正确的染色体排列。
    WNT signaling regulates cell cycle progression and fate determination through β-catenin dependent transcription, and its misregulation is often associated with tumorigenesis. Our recent work demonstrated that basal WNT activity is also required to ensure proper chromosome alignment during mitosis through the regulation of kinesin family member 2A (KIF2A).
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    典型的Wnt信号通过调节β-连环蛋白靶基因在发育和组织更新中起关键作用。最近的证据表明,β-连环蛋白非依赖性Wnt信号传导对于有丝分裂的忠实执行也是必需的。然而,有丝分裂Wnt信号的靶标和特定功能仍未表征。使用磷酸蛋白质组学,我们发现Wnt信号在有丝分裂过程中调节微管解聚酶KIF2A。我们发现Dishevelled通过其N末端和运动域招募KIF2A,在细胞分裂过程中,LRP6信号体形成进一步促进。我们显示Wnt信号调节KIF2A与PLK1的相互作用,这对于KIF2A在纺锤体的定位至关重要。因此,基础Wnt信号的抑制导致体细胞和多能干细胞的染色体错位。我们建议Wnt信号在有丝分裂过程中监测纺锤体两极的KIF2A活性,以确保及时的染色体排列。我们的发现强调了Wnt信号在细胞分裂过程中的功能,这可能对基因组维护有重要意义,尤其是干细胞。
    Canonical Wnt signaling plays critical roles in development and tissue renewal by regulating β-catenin target genes. Recent evidence showed that β-catenin-independent Wnt signaling is also required for faithful execution of mitosis. However, the targets and specific functions of mitotic Wnt signaling still remain uncharacterized. Using phosphoproteomics, we identified that Wnt signaling regulates the microtubule depolymerase KIF2A during mitosis. We found that Dishevelled recruits KIF2A via its N-terminal and motor domains, which is further promoted upon LRP6 signalosome formation during cell division. We show that Wnt signaling modulates KIF2A interaction with PLK1, which is critical for KIF2A localization at the spindle. Accordingly, inhibition of basal Wnt signaling leads to chromosome misalignment in somatic cells and pluripotent stem cells. We propose that Wnt signaling monitors KIF2A activity at the spindle poles during mitosis to ensure timely chromosome alignment. Our findings highlight a function of Wnt signaling during cell division, which could have important implications for genome maintenance, notably in stem cells.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    染色体不稳定性(CIN)是指细胞无法正确分离整个染色体的速率。导致非整倍性。除了它在癌细胞中的流行和推测在促进肿瘤发生中的意义,在非整倍体易发小鼠模型中的研究揭示了CIN与衰老之间的意外联系。使用年轻至老年的人类真皮成纤维细胞,我们观察到随着年龄的增长,有丝分裂机制的功能障碍,轻度干扰了染色体分离的保真度,并有助于完全衰老细胞的产生。这里,我们研究了与年龄相关的CIN的有丝分裂机制。我们发现,老年细胞的稳定动粒-微管(k-MT)附件数量增加,并且纠正不当k-MT相互作用的效率降低。随着MT解聚驱动蛋白13活性的遗传和小分子增强,老年细胞中的染色体错误分离率降低。值得注意的是,恢复的染色体分离准确性抑制了细胞衰老的表型。因此,我们提供了与年龄相关的CIN的机械见解,并公开了使用小分子抑制与年龄相关的CIN和延缓衰老的细胞标志的策略.
    Chromosomal instability (CIN) refers to the rate at which cells are unable to properly segregate whole chromosomes, leading to aneuploidy. Besides its prevalence in cancer cells and postulated implications in promoting tumorigenesis, studies in aneuploidy-prone mouse models uncovered an unanticipated link between CIN and aging. Using young to old-aged human dermal fibroblasts, we observed a dysfunction of the mitotic machinery arising with age that mildly perturbs chromosome segregation fidelity and contributes to the generation of fully senescent cells. Here, we investigated mitotic mechanisms that contribute to age-associated CIN. We found that elderly cells have an increased number of stable kinetochore-microtubule (k-MT) attachments and decreased efficiency in the correction of improper k-MT interactions. Chromosome mis-segregation rates in old-aged cells decreased upon both genetic and small-molecule enhancement of MT-depolymerizing kinesin-13 activity. Notably, restored chromosome segregation accuracy inhibited the phenotypes of cellular senescence. Therefore, we provide mechanistic insight into age-associated CIN and disclose a strategy for the use of a small-molecule to inhibit age-associated CIN and to delay the cellular hallmarks of aging.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    有四个不同长度的八个鞭毛,寄生生物贾第虫是评估鞭毛组装和长度调节的理想模型。为了确定如何保持四种不同的鞭毛长度,我们使用活细胞定量成像和数学建模方法,对不同鞭毛对中的fa内转运(IFT)介导的装配和驱动蛋白13介导的拆解的保守成分进行了分析.每个轴突都有一个从基底延伸的长细胞质区域,并在“鞭毛孔”处过渡到典型的膜结合鞭毛。我们确定每个鞭毛孔是IFT积累和注射的部位,定义功能上类似于过渡区的扩散势垒。IFT介导的组装与长度无关,火车大小,速度,所有鞭毛的注射频率都相似。我们证明了驱动蛋白13在鞭毛尖端的定位与鞭毛长度成反比。因此,我们提出了一个模型,其中长度相关的拆卸机制控制同一细胞内的多个鞭毛长度。
    With eight flagella of four different lengths, the parasitic protist Giardia is an ideal model to evaluate flagellar assembly and length regulation. To determine how four different flagellar lengths are maintained, we used live-cell quantitative imaging and mathematical modeling of conserved components of intraflagellar transport (IFT)-mediated assembly and kinesin-13-mediated disassembly in different flagellar pairs. Each axoneme has a long cytoplasmic region extending from the basal body, and transitions to a canonical membrane-bound flagellum at the \'flagellar pore\'. We determined that each flagellar pore is the site of IFT accumulation and injection, defining a diffusion barrier functionally analogous to the transition zone. IFT-mediated assembly is length-independent, as train size, speed, and injection frequencies are similar for all flagella. We demonstrate that kinesin-13 localization to the flagellar tips is inversely correlated to flagellar length. Therefore, we propose a model where a length-dependent disassembly mechanism controls multiple flagellar lengths within the same cell.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    驱动蛋白是分子马达,利用ATP周转产生的能量沿着微管行走,或者当在微管末端时,调节生长或收缩。所有调节微管动力学的驱动蛋白在微管末端都有很长的停留时间,而那些只走路的人最终停留时间很短。这里,我们通过显示当来自Kinesin-13的关键残基解聚微管时,确定了参与末端结合的关键氨基酸,被引入Kinesin-1,一种对微管动力学没有影响的步行驱动蛋白,最终停留时间增加到几倍。这表明驱动蛋白运动域和微管之间的界面是可延展的,可以调整为有利于晶格或末端结合。
    Kinesins are molecular motors that use energy derived from ATP turnover to walk along microtubules, or when at the microtubule end, regulate growth or shrinkage. All kinesins that regulate microtubule dynamics have long residence times at microtubule ends, whereas those that only walk have short end-residence times. Here, we identify key amino acids involved in end binding by showing that when critical residues from Kinesin-13, which depolymerises microtubules, are introduced into Kinesin-1, a walking kinesin with no effect on microtubule dynamics, the end-residence time is increased up to several-fold. This indicates that the interface between the kinesin motor domain and the microtubule is malleable and can be tuned to favour either lattice or end binding.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    Kinesin超家族是一大组分子马达,它们利用ATP的周转来调节它们与微管细胞骨架的相互作用。这些马达以各种方式利用核苷酸周转和微管结合之间的耦合关系,使它们能够执行各种细胞功能。Kinesin-13家族是一组专业的微管解聚马达。该家族的成员利用其微管不稳定活性来调节染色体分离等过程,维持纤毛和神经元发育。这里,我们描述了目前对该驱动蛋白家族的结构的理解,以及这些蛋白质的不同部分在其微管解聚活性和该驱动蛋白家族的更广泛功能中的作用。
    The Kinesin superfamily is a large group of molecular motors that use the turnover of ATP to regulate their interaction with the microtubule cytoskeleton. The coupled relationship between nucleotide turnover and microtubule binding is harnessed in various ways by these motors allowing them to carry out a variety of cellular functions. The Kinesin-13 family is a group of specialist microtubule depolymerising motors. Members of this family use their microtubule destabilising activity to regulate processes such as chromosome segregation, maintenance of cilia and neuronal development. Here, we describe the current understanding of the structure of this family of kinesins and the role different parts of these proteins play in their microtubule depolymerisation activity and in the wider function of this family of kinesins.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    细胞生物学研究表明,原丝数量,微管的一个基本特征,可以与不同的微管蛋白同种型的表达相关。然而,不知道微管蛋白同种型是否直接控制这种基本的微管性质。这里,我们报告了纯化的人α1B/β3和α1B/β2B微管的高分辨率低温EM重建(3.5-3.65µ),并发现β-微管蛋白同种型可以确定原丝数量。13和14原丝微管的原子模型的比较揭示了微管蛋白亚基的可塑性,表现为“手风琴样”的分布式结构变化,可以容纳不同的晶格组织。此外,与α1B/β3微管相比,α1B/β2B长丝对MCAK或chTOG的被动分解和解聚更稳定,具有不同作用机制的微管相关蛋白。以不同比例混合微管蛋白同种型会产生微管,其原丝数量和稳定性介于同种型纯细丝之间。一起,我们的发现表明,微管原丝的数量和稳定性可以通过β-微管蛋白同种型组成来控制。
    Cell biological studies have shown that protofilament number, a fundamental feature of microtubules, can correlate with the expression of different tubulin isotypes. However, it is not known if tubulin isotypes directly control this basic microtubule property. Here, we report high-resolution cryo-EM reconstructions (3.5-3.65 Å) of purified human α1B/β3 and α1B/β2B microtubules and find that the β-tubulin isotype can determine protofilament number. Comparisons of atomic models of 13- and 14-protofilament microtubules reveal how tubulin subunit plasticity, manifested in \"accordion-like\" distributed structural changes, can accommodate distinct lattice organizations. Furthermore, compared to α1B/β3 microtubules, α1B/β2B filaments are more stable to passive disassembly and against depolymerization by MCAK or chTOG, microtubule-associated proteins with distinct mechanisms of action. Mixing tubulin isotypes in different proportions results in microtubules with protofilament numbers and stabilities intermediate to those of isotypically pure filaments. Together, our findings indicate that microtubule protofilament number and stability can be controlled through β-tubulin isotype composition.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

公众号