ISO 11731

  • 文章类型: Journal Article
    背景:水样培养是检测军团菌属的参考方法。在卫生设施中。直到2017年,UNE-ENISO11731仅包括GVPC介质,抑制干扰微生物群,但阻碍军团菌属的生长。为了改善其恢复,新标准将BCYE培养基纳入工作协议。
    方法:我们根据认可的内部程序将1306个卫生水样接种到BCYE和GVPC上。我们比较了军团菌的cfu/L数。在两种媒体中检测到。
    结果:BCYE的中位数比GVPC高2000cfu/L(P=.000)。在存在大量干扰微生物群的情况下,两种培养基相似;在缺乏或低干扰微生物群的情况下,BCYE的敏感性是GVPC的4倍(P=.000).
    结论:在卫生用水分析中加入BCYE可显著提高军团菌的回收率。在低污染样品中。
    BACKGROUND: Water sample culturing is the reference method to detect Legionella spp. in sanitary facilities. Until 2017, UNE-EN ISO 11731 only included the GVPC medium, which inhibits interfering microbiota but hinders the growth of Legionella spp. To improve its recovery, the new standard incorporates the BCYE medium into the working protocol.
    METHODS: We inoculated 1306 sanitary water samples onto BCYE and GVPC according to an accredited internal procedure. We compared the number of cfu/L of Legionella spp. detected in both media.
    RESULTS: The median in BCYE was 2000 cfu/L higher than in GVPC (P = .000). In the presence of high amounts of interfering microbiota, both media were similar; in the absence or low interfering microbiota BCYE was four times more sensitive than GVPC (P = .000).
    CONCLUSIONS: Including BCYE in the analysis of sanitary water significantly improves the recovery of Legionella spp. in low contaminated samples.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    Detection and enumeration of Legionella in water samples is of great importance for risk assessment analysis. The plate culture method is the gold standard, but has received several well-known criticisms, which have induced researchers to develop alternative methods. The purpose of this study was to compare Legionella counts obtained by the analysis of potable water samples through the plate culture method and through the IDEXX liquid culture Legiolert method. Legionella plate culture, according to ISO 11731:1998, was performed using 1 L of water. Legiolert was performed using both the 10 mL and 100 mL Legiolert protocols. Overall, 123 potable water samples were analyzed. Thirty-seven (30%) of them, positive for L. pneumophila, serogroups 1 or 2-14 by plate culture, were used for comparison with the Legiolert results. The Legiolert 10 mL test detected 34 positive samples (27.6%) and the Legiolert 100 mL test detected 37 positive samples, 27.6% and 30% respectively, out of the total samples analyzed. No significant difference was found between either the Legiolert 10 mL and Legiolert 100 mL vs. the plate culture (p = 0.9 and p = 0.3, respectively) or between the Legiolert 10 mL and Legiolert 100 mL tests (p = 0.83). This study confirms the reliability of the IDEXX Legiolert test for Legionella pneumophila detection and enumeration, as already shown in similar studies. Like the plate culture method, the Legiolert assay is also suitable for obtaining isolates for typing purposes, relevant for epidemiological investigations.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    Legionellae constitute a frequent contamination of warm water systems and can lead to serious infections. Therefore, in many countries it is mandatory to monitor warm water systems for their presence. The method of examination in Germany is regulated by guideline ISO 11731 and DIN EN ISO 11731-2, and the results are reported as concentration of Legionella spp. Only limited information is available on the presence of individual species of Legionellae in the examined systems, since most investigations and research focus solely on Legionella pneumophila as the most important human pathogen. In this study 76,220 samples obtained from 13,397 warm water systems originating from 24 different zip code districts covering an area of more than 71,000km2 in southern Germany were examined. This resulted in the identification of 47,924 Legionella isolates to the species level using a MALDI-TOF mass spectrometry-based method. Legionella species distribution was analyzed with respect to warm water system type, geographic region (defined as zip code district) and temperature during sample taking. Overall, 20.7% of the samples were found positive for Legionella species and 14 different species of Legionella were recovered. These were not equally present throughout the geographic area investigated, but instead an individual regional diversity of Legionella species was observed for the examined zip code districts. Although Legionella pneumophila represented 84% of all contaminations found, depending on the geographical region its proportion varied substantially between 57.5% and 91.2%. The occurrence of other species was also of importance since they accounted for up to 42% of contaminations regionally, with Legionella londiniensis being most prominent representing up to 38.8% of recovered colonies. In addition, the influence of temperature on the individual species was disparate, but the temperature range between 50°C and 59°C was identified as the optimal condition for facilitating emergence of the majority of recovered Legionella species. The identification of Legionella to the species level by MALDI-TOF allowed for a more concise depiction of the regional distribution and the ecology of this genus, and may be of additional value when counter measures need to be initiated.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    Detection and enumeration of Legionella bacteria in drinking water is regulated in Germany by ISO 11731-2. The mandatory method for species identification employs parallel subculturing of suspicious colonies on selective media requiring the handling of a large number of cultivation plates. After changes to the drinking water quality regulation in Germany in 2012 the demand for Legionella contamination testing increased drastically. A more reliable, faster and less laborious method for species identification is therefore desirable. Matrix-assisted laser desorption ionization followed by time of flight detection mass spectrometry (MALDI-TOF MS) promises an accelerated identification of bacteria with high reliability and reduced expenditure. Our study shows that MS-based species identification results are in full concordance with cultural and biochemical detection and differentiation and that valuable additional information can be gained, even though the ISO regulation demands an extended incubation period for primary bacterial cultures that is actually in contrast to the prerequisites of the MALDI Biotyper system. In addition, the established identification algorithm is very economical and improves time-to-result. Based on our findings, the amendment of MALID-TOF MS identification to ISO11731-2 as an alternative identification method should be taken into consideration.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

公众号