IRS, insulin receptor substrate

国税局,胰岛素受体底物
  • 文章类型: Journal Article
    糖尿病肾病(DN)是糖尿病的严重并发症,是终末期肾病的主要病因,这给全世界的人类社会造成了严重的健康问题和巨大的经济负担。常规战略,如肾素-血管紧张素-醛固酮系统阻断,血糖水平控制,和减轻体重,在许多DN管理的临床实践中,可能无法获得令人满意的结果。值得注意的是,由于多目标函数,中药作为DN治疗的主要或替代疗法具有很好的临床益处。越来越多的研究强调确定中药的生物活性化合物和肾脏保护作用的分子机制。参与糖/脂代谢调节的信号通路,抗氧化,抗炎,抗纤维化,足细胞保护已被确定为重要的作用机制。在这里,在回顾临床试验结果后,我们总结了中药及其生物活性成分在治疗和管理DN中的临床疗效,系统评价,和荟萃分析,对动物和细胞实验中报道的相关潜在机制和分子靶标进行了彻底讨论。我们旨在全面了解中药对DN的保护作用。
    Diabetic nephropathy (DN) has been recognized as a severe complication of diabetes mellitus and a dominant pathogeny of end-stage kidney disease, which causes serious health problems and great financial burden to human society worldwide. Conventional strategies, such as renin-angiotensin-aldosterone system blockade, blood glucose level control, and bodyweight reduction, may not achieve satisfactory outcomes in many clinical practices for DN management. Notably, due to the multi-target function, Chinese medicine possesses promising clinical benefits as primary or alternative therapies for DN treatment. Increasing studies have emphasized identifying bioactive compounds and molecular mechanisms of reno-protective effects of Chinese medicines. Signaling pathways involved in glucose/lipid metabolism regulation, antioxidation, anti-inflammation, anti-fibrosis, and podocyte protection have been identified as crucial mechanisms of action. Herein, we summarize the clinical efficacies of Chinese medicines and their bioactive components in treating and managing DN after reviewing the results demonstrated in clinical trials, systematic reviews, and meta-analyses, with a thorough discussion on the relative underlying mechanisms and molecular targets reported in animal and cellular experiments. We aim to provide comprehensive insights into the protective effects of Chinese medicines against DN.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    酒精性肝病(ALD)导致胰岛素抵抗,脂质代谢功能障碍,和炎症。我们研究了陈年大蒜的S-烯丙基巯基半胱氨酸(SAMC)对肝细胞损伤的保护作用和直接调节靶点。使用慢性乙醇喂养的ALD体内模型(NIAAA模型)来测试SAMC的保护功能。观察到SAMC(300mg/kg,通过管饲法)有效改善ALD诱导的体重减轻,脂肪变性,胰岛素抵抗,和炎症而不影响对照小鼠的健康状况,组织学证明,生物化学,和分子生物学分析。通过生物物理分析和分子对接,我们证明SAMC直接靶向细胞膜上的胰岛素受体(INSR)蛋白,然后恢复下游IRS-1/AKT/GSK3β信号。小鼠的肝脏特异性敲低和Insr的AML-12细胞中siRNA介导的敲低显著损害了SAMC(细胞中250μmol/L)介导的保护作用。IRS-1/AKT信号的恢复部分恢复了肝损伤,并进一步促进了SAMC的有益作用。AKT激动剂和重组IGF-1与SAMC组合的连续施用在小鼠模型中显示出肝脏保护作用。长期(90天)给予SAMC对健康小鼠无明显不良反应。我们得出的结论是,SAMC是针对ALD的有效且安全的肝保护性补充剂,部分通过INSR的直接结合和IRS-1/AKT/GSK3β途径的部分调节。
    Alcoholic liver disease (ALD) causes insulin resistance, lipid metabolism dysfunction, and inflammation. We investigated the protective effects and direct regulating target of S-allylmercaptocysteine (SAMC) from aged garlic on liver cell injury. A chronic ethanol-fed ALD in vivo model (the NIAAA model) was used to test the protective functions of SAMC. It was observed that SAMC (300 mg/kg, by gavage method) effectively ameliorated ALD-induced body weight reduction, steatosis, insulin resistance, and inflammation without affecting the health status of the control mice, as demonstrated by histological, biochemical, and molecular biology assays. By using biophysical assays and molecular docking, we demonstrated that SAMC directly targeted insulin receptor (INSR) protein on the cell membrane and then restored downstream IRS-1/AKT/GSK3β signaling. Liver-specific knock-down in mice and siRNA-mediated knock-down in AML-12 cells of Insr significantly impaired SAMC (250 μmol/L in cells)-mediated protection. Restoration of the IRS-1/AKT signaling partly recovered hepatic injury and further contributed to SAMC\'s beneficial effects. Continuous administration of AKT agonist and recombinant IGF-1 in combination with SAMC showed hepato-protection in the mice model. Long-term (90-day) administration of SAMC had no obvious adverse effect on healthy mice. We conclude that SAMC is an effective and safe hepato-protective complimentary agent against ALD partly through the direct binding of INSR and partial regulation of the IRS-1/AKT/GSK3β pathway.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    Procyanidins have been reported to possess potential for the prevention of hyperglycaemia. However, there are very few data for procyanidins about the difference the degree of polymerisation (DP) has on anti-hyperglycaemic effects. Moreover, the underlying molecular mechanisms by which procyanidins suppress hyperglycaemia are not yet fully understood. In the present study, we prepared procyanidin fractions with different DP, namely low-DP (DP≤3) and high-DP (DP≥4) fractions, from a cacao liquor procyanidin-rich extract (CLPr). These fractions were administered orally to Institute of Cancer Research (ICR) mice and their anti-hyperglycaemic effects were examined. We found that CLPr and its fractions prevent postprandial hyperglycaemia accompanied by an increase in the plasma glucagon-like peptide-1 (GLP-1) level with or without glucose load. In the absence of glucose load, both fractions increased the plasma insulin level and activated its downstream signalling pathway in skeletal muscle, resulting in promotion of the translocation of GLUT4. Phosphorylation of AMP-activated protein kinase (AMPK) was also involved in the promotion of GLUT4 translocation. High- and low-DP fractions showed a similar activation of insulin and AMPK pathways. In conclusion, cacao liquor procyanidins prevent hyperglycaemia by promoting GLUT4 translocation in skeletal muscle, and both the GLP-1-activated insulin pathway and the AMPK pathway are involved in the underlying molecular mechanism.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    OBJECTIVE: The Pro12Ala (exon 2) and His447His (exon 6) polymorphisms of PPAR-γ, and Gly972Arg polymorphism of IRS-1 have been implicated in insulin resistance (IR) and adiposity. Our aim was to investigate the influence of these polymorphisms on metabolic features of polycystic ovary syndrome (PCOS).
    METHODS: Fifty-three PCOS women and 26 control women underwent a clinical and biochemical evaluation, including a 75-g oral glucose tolerance test. Insulin secretion and insulin sensitivity indices were calculated.
    RESULTS: Frequencies of PPAR-γ polymorphisms did not differ from those predicted by the Hardy-Weinberg equilibrium. Instead, the IRS-1 Gly972Arg allele was significantly more frequent in the PCOS group compared to controls. The most frequent allelic combinations were IRS1+/exon2-/exon6- (which prevailed in PCOS) and IRS-1-/exon2-/exon6- (which prevailed in controls). Among PCOS women, compared with the wild type patients, carriers of the Gly972Arg IRS-1 allele had lower E2 levels, while carriers of the Pro12Ala PPAR-γ (exon 2) allele had lower free testosterone levels. No other significant relationships were noted. When compared with the wild type, in PCOS group IR and beta-cell function were: (i) trendwise greater in carriers of the variant IRS-1 allele; (ii) trendwise lower in carriers of the variant PPAR-γ exon 6 allele; (iii) significantly lower in carriers of the variant PPAR-γ exon 2 allele.
    CONCLUSIONS: Our data support the protective influence of PPAR-γ-exon 2 and exon 6 variants on IR and beta cell function, whereas IRS-1 polymorphism is associated with an unfavorable metabolic profile. However, these associations do not fully explain the high metabolic risk associated with PCOS.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    We previously reported that ubiquitin-specific protease (USP) 2 in macrophages down-regulates genes associated with metabolic diseases, suggesting a putative anti-diabetic role for USP2 in macrophages. In this study, we evaluate this role at both cellular and individual levels. Isolated macrophages forcibly expressing Usp2a, a longer splicing variant of USP2, failed to modulate the insulin sensitivity of 3T3-L1 adipocytes. Similarly, macrophage-selective overexpression of Usp2a in mice (Usp2a transgenic mice) had a negligible effect on insulin sensitivity relative to wild type littermates following a three-month high-fat diet. However, Usp2a transgenic mice exhibited fewer M1 macrophages in their mesenteric adipose tissue. Following a six-month high-fat diet, Usp2a transgenic mice exhibited a retarded progression of insulin resistance in their skeletal muscle and liver, and an improvement in insulin sensitivity at an individual level. Although conditioned media from Usp2a-overexpressing macrophages did not directly affect the insulin sensitivity of C2C12 myotubes compared to media from control macrophages, they did increase the insulin sensitivity of C2C12 cells after subsequent conditioning with 3T3-L1 cells. These results indicate that macrophage USP2A hampers obesity-elicited insulin resistance via an adipocyte-dependent mechanism.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

公众号