IRE1, inositol-requiring enzyme 1

IRE1 , 需要肌醇的酶 1
  • 文章类型: Journal Article
    免疫检查点阻断疗法已经深刻地彻底改变了癌症免疫治疗领域。然而,尽管对各种癌症有很大的希望,免疫检查点抑制剂在结直肠癌(CRC)中的疗效仍然较低.这主要是由于肿瘤微环境(TME)的免疫抑制特征。新的证据表明,某些化疗药物诱导免疫原性细胞死亡(ICD),显示出重塑免疫抑制TME的巨大潜力。在这项研究中,使用体外和体内实验方法证实了人参皂苷Rg3(Rg3)作为针对CRC细胞的ICD诱导物的潜力。槲皮素(QTN)可引起活性氧(ROS),从而显着增强Rg3的ICD功效。为了改善与化疗药物相关的体内递送障碍,开发了叶酸(FA)靶向的聚乙二醇(PEG)修饰的两亲性环糊精纳米颗粒(NP)用于Rg3和QTN的共封装。得到的纳米制剂(CD-PEG-FA.Rg3.QTN)在原位CRC小鼠模型中显着延长了血液循环并增强了肿瘤靶向,导致免疫抑制TME的转化。此外,CD-PEG-FA。Rg3.QTN与抗PD-L1组合实现了动物的显著更长的存活。该研究为CRC的治疗提供了有希望的策略。
    The immune checkpoint blockade therapy has profoundly revolutionized the field of cancer immunotherapy. However, despite great promise for a variety of cancers, the efficacy of immune checkpoint inhibitors is still low in colorectal cancer (CRC). This is mainly due to the immunosuppressive feature of the tumor microenvironment (TME). Emerging evidence reveals that certain chemotherapeutic drugs induce immunogenic cell death (ICD), demonstrating great potential for remodeling the immunosuppressive TME. In this study, the potential of ginsenoside Rg3 (Rg3) as an ICD inducer against CRC cells was confirmed using in vitro and in vivo experimental approaches. The ICD efficacy of Rg3 could be significantly enhanced by quercetin (QTN) that elicited reactive oxygen species (ROS). To ameliorate in vivo delivery barriers associated with chemotherapeutic drugs, a folate (FA)-targeted polyethylene glycol (PEG)-modified amphiphilic cyclodextrin nanoparticle (NP) was developed for co-encapsulation of Rg3 and QTN. The resultant nanoformulation (CD-PEG-FA.Rg3.QTN) significantly prolonged blood circulation and enhanced tumor targeting in an orthotopic CRC mouse model, resulting in the conversion of immunosuppressive TME. Furthermore, the CD-PEG-FA.Rg3.QTN achieved significantly longer survival of animals in combination with Anti-PD-L1. The study provides a promising strategy for the treatment of CRC.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    中风被认为是死亡和神经残疾的主要原因,这给个人和社区带来了巨大的负担。迄今为止,中风的有效治疗方法受到其复杂病理机制的限制。自噬是指溶酶体参与的细胞内降解过程。自噬通过消除受损或非必需的细胞成分在维持细胞的稳态和存活中起关键作用。越来越多的证据支持自噬保护神经元细胞免受缺血性损伤。然而,在某些情况下,自噬激活诱导细胞死亡并加重缺血性脑损伤。已经发现多种天然衍生的化合物调节自噬并发挥针对中风的神经保护作用。在目前的工作中,我们综述了调节自噬的天然化合物的最新进展,并讨论了它们在卒中治疗中的潜在应用.
    Stroke is considered a leading cause of mortality and neurological disability, which puts a huge burden on individuals and the community. To date, effective therapy for stroke has been limited by its complex pathological mechanisms. Autophagy refers to an intracellular degrading process with the involvement of lysosomes. Autophagy plays a critical role in maintaining the homeostasis and survival of cells by eliminating damaged or non-essential cellular constituents. Increasing evidence support that autophagy protects neuronal cells from ischemic injury. However, under certain circumstances, autophagy activation induces cell death and aggravates ischemic brain injury. Diverse naturally derived compounds have been found to modulate autophagy and exert neuroprotection against stroke. In the present work, we have reviewed recent advances in naturally derived compounds that regulate autophagy and discussed their potential application in stroke treatment.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    血管损伤后的新生内膜增生是再狭窄的代表性并发症。内质网(ER)应激诱导的未折叠蛋白反应(UPR)参与了血管内膜增生的发病机制。PARP16,聚(ADP-核糖)聚合酶家族的成员,与核包络和ER相关。这里,我们发现PERK和IRE1α被PARP16核糖基化,这可能在血小板衍生生长因子(PDGF)-BB刺激过程中促进平滑肌细胞(SMC)的增殖和迁移。使用染色质免疫沉淀结合深度测序(ChIP-seq)分析,PARP16被鉴定为组蛋白H3赖氨酸4(H3K4)甲基转移酶SMYD3的新靶基因,SMYD3可以与Parp16的启动子结合并增加H3K4me3水平以激活其宿主基因的转录。导致UPR激活和SMC增殖。此外,PARP16或SMYD3的敲除都会阻碍ER应激和SMC增殖。相反,PARP16的过表达诱导ER应激和SMC增殖和迁移。PARP16的体内消耗通过介导UPR激活和新内膜SMC增殖来减轻损伤诱导的新内膜增生。这项研究确定SMYD3-PARP16是调节UPR和新生内膜增生的新信号轴,并且靶向该轴在预防新内膜增生相关疾病方面具有重要意义。
    Neointimal hyperplasia after vascular injury is a representative complication of restenosis. Endoplasmic reticulum (ER) stress-induced unfolded protein response (UPR) is involved in the pathogenesis of vascular intimal hyperplasia. PARP16, a member of the poly(ADP-ribose) polymerases family, is correlated with the nuclear envelope and the ER. Here, we found that PERK and IRE1α are ADP-ribosylated by PARP16, and this might promote proliferation and migration of smooth muscle cells (SMCs) during the platelet-derived growth factor (PDGF)-BB stimulating. Using chromatin immunoprecipitation coupled with deep sequencing (ChIP-seq) analysis, PARP16 was identified as a novel target gene for histone H3 lysine 4 (H3K4) methyltransferase SMYD3, and SMYD3 could bind to the promoter of Parp16 and increased H3K4me3 level to activate its host gene\'s transcription, which causes UPR activation and SMC proliferation. Moreover, knockdown either of PARP16 or SMYD3 impeded the ER stress and SMC proliferation. On the contrary, overexpression of PARP16 induced ER stress and SMC proliferation and migration. In vivo depletion of PARP16 attenuated injury-induced neointimal hyperplasia by mediating UPR activation and neointimal SMC proliferation. This study identified SMYD3-PARP16 is a novel signal axis in regulating UPR and neointimal hyperplasia, and targeting this axis has implications in preventing neointimal hyperplasia related diseases.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    OBJECTIVE: Alcoholic liver disease (ALD) remains a major cause of morbidity and mortality, with no Food and Drug Administration-approved therapy. Chronic alcohol consumption causes a pro-oxidant environment and increases hepatic lipid peroxidation, with acrolein being the most reactive/toxic by-product. This study investigated the pathogenic role of acrolein in hepatic endoplasmic reticulum (ER) stress, steatosis, and injury in experimental ALD, and tested acrolein elimination/scavenging (using hydralazine) as a potential therapy in ALD.
    METHODS: In vitro (rat hepatoma H4IIEC cells) and in vivo (chronic+binge alcohol feeding in C57Bl/6 mice) models were used to examine alcohol-induced acrolein accumulation and consequent hepatic ER stress, apoptosis, and injury. In addition, the potential protective effects of the acrolein scavenger, hydralazine, were examined both in vitro and in vivo.
    RESULTS: Alcohol consumption/metabolism resulted in hepatic accumulation of acrolein-protein adducts, by up-regulation of cytochrome P4502E1 and alcohol dehydrogenase, and down-regulation of glutathione-s-transferase-P, which metabolizes/detoxifies acrolein. Alcohol-induced acrolein adduct accumulation led to hepatic ER stress, proapoptotic signaling, steatosis, apoptosis, and liver injury; however, ER-protective/adaptive responses were not induced. Notably, direct exposure to acrolein in vitro mimicked the in vivo effects of alcohol, indicating that acrolein mediates the adverse effects of alcohol. Importantly, hydralazine, a known acrolein scavenger, protected against alcohol-induced ER stress and liver injury, both in vitro and in mice.
    CONCLUSIONS: Our study shows the following: (1) alcohol consumption triggers pathologic ER stress without ER adaptation/protection; (2) alcohol-induced acrolein is a potential therapeutic target and pathogenic mediator of hepatic ER stress, cell death, and injury; and (3) removal/clearance of acrolein by scavengers may have therapeutic potential in ALD.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

公众号