Hybrid membrane

杂化膜
  • 文章类型: Journal Article
    在这项工作中,合成了一种基于聚氧钒酸(NH4)7[MnV13O38](AMV)和1-乙基-3-甲基咪唑鎓双(三氟甲基磺酰基)酰亚胺(EMIMTFSI)的质子导电无机填料,用于与磺化聚(芳基醚酮砜)(SPEKS)杂化,以解决高质子电导率和机械强度之间的“权衡”。由于增强的离子相互作用,新型无机填料AMV-EMIMTFSI(AI)在聚合物基质中均匀分散且稳定。AI提供了额外的质子传输位点,导致提高离子交换容量(IEC)和改善质子电导率,即使在低溶胀率。优化的SPAEKS-50/AI-5(对于SPAEKS的磺化程度为50,对于AI填料的重量百分比为5)膜在80°C时表现出最高的质子电导率为0.188S·cm-1,IEC为2.38mmol·g-1。分子间力的增强使机械强度从35提高到55MPa,断裂伸长率从17提高到45%,表明优异的机械性能。由于氢键网络和阻塞效应,杂化膜还表现出增强的耐甲醇性,使其适用于直接甲醇燃料电池(DMFC)应用,在80°C时表现出15.1mW·cm-2的功率密度。进一步功能化这些杂化膜以针对特定应用定制其性能的可能性为研究和开发提供了令人兴奋的新途径。通过改变填料的类型和分布或加入额外的官能团,可以定制膜以满足各种能量存储和转换系统的独特需求,提高其性能,拓宽其应用范围。这项工作为通过无机填料杂化设计聚合物电解质膜提供了新的见解。
    In this work, a proton-conductive inorganic filler based on polyoxovanadate (NH4)7[MnV13O38] (AMV) and 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide (EMIM TFSI) was synthesized for hybridization with sulfonated poly(aryl ether ketone sulfone) (SPAEKS) to address the \"trade-off\" between high proton conductivity and mechanical strength. The novel inorganic filler AMV-EMIM TFSI (AI) was uniformly dispersed and stable within the polymer matrix due to the enhanced ionic interaction. AI provided additional proton transport sites, leading to an elevated ion exchange capacity (IEC) and improved proton conductivity, even at low swelling ratios. The optimized SPAEKS-50/AI-5 (50 for degree of sulfonation of SPAEKS and 5 for weight percentage of AI filler) membrane exhibited the highest proton conductivity of 0.188 S·cm-1 at 80 °C with an IEC of 2.38 mmol·g-1. The enhancement of intermolecular forces improved the mechanical strength from 35 to 55 MPa and improved the elongation at break from 17 to 45%, indicating excellent mechanical properties. The hybrid membrane also demonstrated reinforced methanol resistance due to the hydrogen bonding network and blocking effect, making it suitable for direct methanol fuel cell (DMFC) applications, which exhibited a power density of 15.1 mW·cm-2 at 80 °C. The possibility of further functionalizing these hybrid membranes to tailor their properties for specific applications presents exciting new avenues for research and development. By modification of the type and distribution of fillers or incorporation of additional functional groups, the membranes could be customized to meet the unique demands of various energy storage and conversion systems, enhancing their performance and broadening their application scope. This work provides new insights into the design of polymer electrolyte membranes through inorganic filler hybridization.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    开发用于膜蒸馏(MD)的理想膜是最重要的。通过将纳米颗粒添加到膜的表面或表面上来提高MD的效率已经引起了科学界的相当大的关注。彻底检查具有理想特性的最先进的纳米材料支持的MD膜是至关重要的,因为它们大大提高了MD过程的效率和可靠性。这个,反过来,为实现可持续的水-能源-环境关系开辟了机会。通过将碳基纳米材料引入膜结构中,膜获得优异的分离能力,对各种饲料水的抵抗力,和更长的寿命。此外,在MD中使用碳基纳米材料已经导致改善的膜性能特征,例如增加的渗透性和减少的结垢倾向。这些纳米材料还实现了新型的膜功能,例如原位污垢降解和局部发热。因此,本文综述了不同碳基纳米材料在膜合成中的利用如何影响膜特性,特别是液体进入压力(LEP),疏水性,孔隙度,和膜渗透性,以及减少污垢,从而推进了水处理工艺的MD技术。此外,这篇综述还讨论了发展,挑战,以及从这些发现中产生的研究机会。
    The development of an ideal membrane for membrane distillation (MD) is of the utmost importance. Enhancing the efficiency of MD by adding nanoparticles to or onto a membrane\'s surface has drawn considerable attention from the scientific community. It is crucial to thoroughly examine state-of-the-art nanomaterials-enabled MD membranes with desirable properties, as they greatly enhance the efficiency and reliability of the MD process. This, in turn, opens up opportunities for achieving a sustainable water-energy-environment nexus. By introducing carbon-based nanomaterials into the membrane\'s structure, the membrane gains excellent separation abilities, resistance to various feed waters, and a longer lifespan. Additionally, the use of carbon-based nanomaterials in MD has led to improved membrane performance characteristics such as increased permeability and a reduced fouling propensity. These nanomaterials have also enabled novel membrane capabilities like in situ foulant degradation and localized heat generation. Therefore, this review offers an overview of how the utilization of different carbon-based nanomaterials in membrane synthesis impacts the membrane characteristics, particularly the liquid entry pressure (LEP), hydrophobicity, porosity, and membrane permeability, as well as reduced fouling, thereby advancing the MD technology for water treatment processes. Furthermore, this review also discusses the development, challenges, and research opportunities that arise from these findings.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    膜的离子渗透性和选择性在纳米流体行为中至关重要,影响从传统到先进制造业的行业。在这里,我们通过引入离子聚酰胺胺(PAMAM)树枝状聚合物进行离子分离,证明了具有埃尺度离子传输通道的离子导电膜的工程。由于增强的局部电荷密度,外部富季铵结构有助于显著的静电荷排除;PAMAM树枝状聚合物的内部原生质通道被组装以提供额外程度的自由体积。这有利于一价离子转移,同时保持连续性和有效的离子筛选。树枝状聚合物组装的杂化膜实现了2.81molm-2h-1(K)的高单价离子渗透率,达到优异的单/多价选择性高达20.1(K+/Mg2+),并超过了最先进的膜的渗透选择性。实验结果和模拟计算都表明,令人印象深刻的离子选择性源于单/多价离子之间的传输能垒的显着差异,由双功能膜通道的“外部-内部”协同作用诱导。
    The ion permeability and selectivity of membranes are crucial in nanofluidic behavior, impacting industries ranging from traditional to advanced manufacturing. Herein, we demonstrate the engineering of ion-conductive membranes featuring angstrom-scale ion-transport channels by introducing ionic polyamidoamine (PAMAM) dendrimers for ion separation. The exterior quaternary ammonium-rich structure contributes to significant electrostatic charge exclusion due to enhanced local charge density; the interior protoplasmic channels of PAMAM dendrimer are assembled to provide additional degrees of free volume. This facilitates the monovalent ion transfer while maintaining continuity and efficient ion screening. The dendrimer-assembled hybrid membrane achieves high monovalent ion permeance of 2.81 mol m-2 h-1 (K+), reaching excellent mono/multivalent selectivity up to 20.1 (K+/Mg2+) and surpassing the permselectivities of state-of-the-art membranes. Both experimental results and simulating calculations suggest that the impressive ion selectivity arises from the significant disparity in transport energy barrier between mono/multivalent ions, induced by the \"exterior-interior\" synergistic effects of bifunctional membrane channels.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    乳腺癌骨转移是一种晚期疾病,通常采用放疗和化疗治疗,这导致严重的副作用和有限的有效性。为了改善这一点,声动力疗法可能是未来更安全有效的方法。细菌外膜囊泡(OMV)具有优异的免疫调节特性,包括调节巨噬细胞极化,促进DC细胞成熟,增强抗肿瘤作用。将OMV与声动力疗法结合可以产生协同抗肿瘤作用。因此,我们构建了多功能纳米颗粒用于治疗乳腺癌骨转移。我们将乳腺癌细胞膜和细菌外膜囊泡融合形成杂化膜(HM),然后将负载IR780的PLGA与HM封装在一起以产生纳米颗粒,IR780@PLGA@HM,具有肿瘤靶向性,免疫调节,和声动力学能力。实验表明,IR780@PLGA@HM纳米粒子具有良好的生物相容性,有效靶向4T1肿瘤,促进巨噬细胞I型极化和DC细胞活化,抗肿瘤炎症因子表达增强,并表现出在体外和体内有效杀死肿瘤的能力,对乳腺癌骨转移有很好的治疗效果。因此,我们构建的纳米颗粒为有效治疗乳腺癌骨转移提供了新的策略。
    Breast cancer bone metastasis is a terminal-stage disease and is typically treated with radiotherapy and chemotherapy, which causes severe side effects and limited effectiveness. To improve this, Sonodynamic therapy may be a more safe and effective approach in the future. Bacterial outer membrane vesicles (OMV) have excellent immune-regulating properties, including modulating macrophage polarization, promoting DC cell maturation, and enhancing anti-tumor effects. Combining OMV with Sonodynamic therapy can result in synergetic anti-tumor effects. Therefore, we constructed multifunctional nanoparticles for treating breast cancer bone metastasis. We fused breast cancer cell membranes and bacterial outer membrane vesicles to form a hybrid membrane (HM) and then encapsulated IR780-loaded PLGA with HM to produce the nanoparticles, IR780@PLGA@HM, which had tumor targeting, immune regulating, and Sonodynamic abilities. Experiments showed that the IR780@PLGA@HM nanoparticles had good biocompatibility, effectively targeted to 4T1 tumors, promoted macrophage type I polarization and DC cells activation, strengthened anti-tumor inflammatory factors expression, and presented the ability to effectively kill tumors both in vitro and in vivo, which showed a promising therapeutic effect on breast cancer bone metastasis. Therefore, the nanoparticles we constructed provided a new strategy for effectively treating breast cancer bone metastasis.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    食品和环境中的霉菌毒素污染严重危害人类健康。敏感和及时的检测霉菌毒素至关重要。这里,我们报道了一种具有吸收性和响应性的双功能杂化膜,用于荧光定量检测真菌毒素黄曲霉毒素B1(AFB1)。建立了一种生物矿化和微波加速的制造方法,以制备具有高密度负载的金属-有机骨架(MOF)的杂化膜。MOF在捕获AFB1时表现出很高的效率,同时显示出荧光强度的变化。启用双吸附响应模式。从杂化膜的固有多孔结构和负载MOF的吸收/响应能力,与常规浸泡方法相比,过滤增强检测模式可提供1.67倍的信号增加。因此,杂化膜具有10分钟的快速响应时间和0.757ngmL-1的低检测限,在快速性和灵敏度方面优于大多数类似物。杂化膜也表现出优越的特异性,再现性,和抗干扰能力,甚至在强酸性或碱性等极端环境中表现良好,满足方便和现场检测的实际要求。因此,该膜在鸡饲料样品中具有很强的适用性,检测恢复在70.6%和101%之间。该杂化膜在用于农业和食品的真菌毒素的快速和现场检查中应该具有重要的前景。
    Mycotoxin contamination in food and the environment seriously harms human health. Sensitive and timely detection of mycotoxins is crucial. Here, we report a dual-functional hybrid membrane with absorptivity and responsiveness for fluorescent-quantitative detection of mycotoxin aflatoxin B1 (AFB1). A biomineralization-inspired and microwave-accelerated fabrication method was established to prepare a hybrid membrane with a metal-organic framework (MOF) loaded in high density. The MOF presented high efficiency in capturing AFB1 and showed fluorescence intensity alteration simultaneously, enabling a dual adsorption-response mode. Deriving from the inherent porous structure of the hybrid membrane and the absorptive/responsive ability of the loaded MOF, a filtration-enhanced detection mode was elaborated to provide a 1.67-fold signal increase compared with the conventional soaking method. Therefore, the hybrid membrane exhibited a rapid response time of 10 min and a low detection limit of 0.757 ng mL-1, superior to most analogues in rapidity and sensitivity. The hybrid membrane also presented superior specificity, reproducibility, and anti-interference ability and even performed well in extreme environments such as strong acid or alkaline, satisfying the practical requirements for facile and in-field detection. Therefore, the membrane had strong applicability in chicken feed samples, with a detection recovery between 70.6% and 101%. The hybrid membrane should have significant prospects in the rapid and in-field inspection of mycotoxins for agriculture and food.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    背景:通过细胞凋亡清除凋亡细胞对于预防动脉粥样硬化进展至关重要,和受损的红细胞增多有助于加重动脉粥样硬化。
    结果:在这项研究中,我们发现糖尿病ApoE-/-小鼠表现出加重的动脉粥样硬化,因为高血糖至少部分地由于巨噬细胞上Mer酪氨酸激酶(MerTK)的表达减少而损害了细胞增殖能力.为了在斑块中的巨噬细胞中局部恢复MerTK,因此开发了杂化膜纳米囊泡(HMNV)。简而言之,将来自MerTK过表达RAW264.7细胞和运铁蛋白受体(TfR)过表达HEK293T细胞的细胞膜与DOPE聚合物混合以产生被称为HMNV的纳米囊泡。HMNV可以与受体细胞膜融合,从而增加糖尿病巨噬细胞中的MerTK,这反过来又恢复了有效细胞能力。在对糖尿病ApoE-/-小鼠静脉内给药后,超顺磁性氧化铁纳米颗粒(SMN)装饰的HMNV在磁导航下显著积累在主动脉部位,受体巨噬细胞有效清除凋亡细胞,从而减少炎症。
    结论:我们的研究表明,巨噬细胞中MerTK的减少有助于糖尿病ApoE-/-小鼠动脉粥样硬化的加重,通过HMNV局部恢复斑块巨噬细胞中的MerTK可能是一种有希望的治疗方法。
    BACKGROUND: Clearance of apoptotic cells by efferocytosis is crucial for prevention of atherosclerosis progress, and impaired efferocytosis contributes to the aggravated atherosclerosis.
    RESULTS: In this study, we found that diabetic ApoE-/- mice showed aggravated atherosclerosis as hyperglycemia damaged the efferocytosis capacity at least partially due to decreased expression of Mer tyrosine kinase (MerTK) on macrophages. To locally restore MerTK in the macrophages in the plaque, hybrid membrane nanovesicles (HMNVs) were thus developed. Briefly, cell membrane from MerTK overexpressing RAW264.7 cell and transferrin receptor (TfR) overexpressing HEK293T cell were mixed with DOPE polymers to produce nanovesicles designated as HMNVs. HMNVs could fuse with the recipient cell membrane and thus increased MerTK in diabetic macrophages, which in turn restored the efferocytosis capacity. Upon intravenous administration into diabetic ApoE-/- mice, superparamagnetic iron oxide nanoparticles (SMN) decorated HMNVs accumulated at the aorta site significantly under magnetic navigation, where the recipient macrophages cleared the apoptotic cells efficiently and thus decreased the inflammation.
    CONCLUSIONS:  Our study indicates that MerTK decrease in macrophages contributes to the aggravated atherosclerosis in diabetic ApoE-/- mice and regional restoration of MerTK in macrophages of the plaque via HMNVs could be a promising therapeutic approach.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    太阳能驱动的界面蒸发为可持续的淡水和能源生产提供了有希望的途径。然而,开发高效的光热和光催化纳米材料具有挑战性。在这里,亚化学计量氧化钼(MoO3-x)纳米粒子是在温和的条件下通过逐步还原处理1-半胱氨酸合成的,以同时进行光热转化和光催化反应。将低还原度的MoO3-x纳米粒子装饰在亲水棉布上,制备MCML蒸发器,污染物降解,以及发电。获得的MCML蒸发器具有很强的局部光热效应,这可以归因于通过MoO3-x纳米粒子中的局部表面等离子体共振效应和蒸发器的低热损失的优异光热转换。同时,MoO3-x纳米粒子的丰富表面积和局部的光热效应共同有效地加速了抗生素四环素的光催化降解反应。得益于这些优势,MCML蒸发器获得了4.14kgm-2h-1的优异蒸发率,90.7%的令人钦佩的转化效率,在1次阳光照射下,足够的降解效率为96.2%。此外,在与热电模块合理组装后,该混合装置可用于产生1.0Wm-2的电功率密度。这项工作为偏远和离网地区的淡水生产和污水处理以及发电提供了有效的补充策略。
    Solar-driven interfacial evaporation provides a promising pathway for sustainable freshwater and energy generation. However, developing highly efficient photothermal and photocatalytic nanomaterials is challenging. Herein, substoichiometric molybdenum oxide (MoO3-x) nanoparticles are synthesized via step-by-step reduction treatment of l-cysteine under mild conditions for simultaneous photothermal conversion and photocatalytic reactions. The MoO3-x nanoparticles of low reduction degree are decorated on hydrophilic cotton cloth to prepare a MCML evaporator toward rapid water production, pollutant degradation, as well as electricity generation. The obtained MCML evaporator has a strong local light-to-heat effect, which can be attributed to excellent photothermal conversion via the local surface plasmon resonance effect in MoO3-x nanoparticles and the low heat loss of the evaporator. Meanwhile, the rich surface area of MoO3-x nanoparticles and the localized photothermal effect together effectively accelerate the photocatalytic degradation reaction of the antibiotic tetracycline. With the benefit of these advantages, the MCML evaporator attains a superior evaporation rate of 4.14 kg m-2 h-1, admirable conversion efficiency of 90.7%, and adequate degradation efficiency of 96.2% under 1 sun irradiation. Furthermore, after being rationally assembled with a thermoelectric module, the hybrid device can be employed to generate 1.0 W m-2 of electric power density. This work presents an effective complementary strategy for freshwater production and sewage treatment as well as electricity generation in remote and off-grid regions.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    迫切需要开发用于从含有丰富的Mg2+的盐水中分离Li+的高效且环境友好的技术,以满足对锂资源日益增长的需求。在这项工作中,我们通过整合氢锰氧化物(HMO)制备杂化膜,锂离子筛,作为阴离子交换膜(AEMs)的填料,季铵官能化的聚(2,6-二甲基-1,4-苯醚)(QPPO)和聚(间三联苯哌啶)(m-PTP)。阳离子通过源自阴离子的静电引力和跨膜的浓度差进行传输。由于AEMs中固定阳离子基团的静电排斥和空间电阻的影响,具有较少电荷和较小半径的Li+将优先通过膜。此外,HMO的存在为Li+提供了额外的快速传输通道,导致增强的Li+/Mg2+分离性能。结果表明,20%HMO@m-PTP具有较高的Li通量(0.48mol/m2·h)和Li/Mg2选择性(βLi/Mg2=14.1)。分子动力学模拟表明,m-PTP比QPPO具有更大的自由体积,有利于阳离子的快速转运。光谱分析证实了Li+在HMO中的插入和筛分。这项工作说明了基于锂离子筛的阴离子交换和阳离子浓度驱动的杂化膜在低能量和高效Li萃取过程中的巨大潜力。
    There is an urgent need to develop efficient and environmentally friendly technologies for separating Li+ from brines containing abundant Mg2+ to meet the growing demand for lithium resources. In this work, we prepared hybrid membranes by integrating hydrogen manganese oxide (HMO), a lithium-ion sieve, as a filler into anion-exchange membranes (AEMs), the quaternary ammonium-functionalized poly(2,6-dimethyl-1,4-phenylene oxide) (QPPO) and poly(m-terphenyl piperidinium) (m-PTP). Cations are transported by electrostatic attraction originating from anions and the concentration difference across membranes. Because of the effects of electrostatic repulsion of the fixed cationic groups and steric resistance in AEMs, Li+ with less charge and smaller radius will preferentially pass through the membrane. In addition, the presence of HMO provides an additional fast transport channel for Li+, resulting in an enhanced Li+/Mg2+ separation performance. The results show that 20%HMO@m-PTP exhibits high Li+ flux (0.48 mol/m2·h) and Li+/Mg2+ selectivity (βLi+/Mg2+ = 14.1). Molecular dynamics simulations show that m-PTP has more free volume than QPPO, which is beneficial for rapid cation transport. Spectral analysis confirms the insertion and sieving of Li+ in HMO. This work illustrates the great potential of anion-exchange- and cation-concentration-driven hybrid membranes based on lithium-ion sieves for low-energy and efficient Li+ extraction processes.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    在癌症手术后伤口愈合期间,血小板,中性粒细胞,和巨噬细胞在伤口部位积聚并诱导重要的病理生理学特征。利用这些病理生理特征,开发靶向给药系统是肿瘤术后免疫治疗的重要策略。在这里,开发了一种结合CD47阻断的杂交膜双驱动精确递送系统,用于靶向递送和靶向调节,以诱导术后免疫治疗。精确递送系统由装载有R848纳米颗粒的IR820修饰的血小板-中性粒细胞杂化膜组成。根据肿瘤术后伤口炎症微环境引起的血小板聚集和中性粒细胞倾向的病理特点,双驱动给药系统可以实现免疫药物对肿瘤部位的靶向给药和靶向调控。在荧光成像引导下精确递送后,R848的目标是将M2巨噬细胞重新编程为M1巨噬细胞,刺激树突状细胞成熟作为佐剂,然后激活T细胞免疫.R848极化和CD47阻断共同增强了巨噬细胞的吞噬功能,结合T细胞介导的细胞免疫反应最终有效抑制肿瘤术后复发,转移,延长生存时间。它开发了一种靶向递送和调节系统,用于针对术后免疫治疗的伤口愈合的病理生理学特征的细胞特异性反应。
    During wound healing after cancer surgery, platelets, neutrophils, and macrophages accumulate at the wound site and induce important pathophysiological features. Utilizing these pathophysiological features, the development of targeted delivery systems for postoperative tumor immunotherapy is an important strategy. Herein, a twindrive precise delivery system of hybrid membrane combined with CD47 blocking is developed for targeted delivery and targeted regulation to induce postoperative immunotherapy. The precise delivery system consists of IR820-modified platelet-neutrophil hybrid membranes loaded with R848 nanoparticles. Based on the pathological characteristics of platelet aggregation and neutrophil tendency caused by the wound inflammatory microenvironment after tumor surgery, the twindrive delivery system could achieve targeted delivery and targeted regulation of immune drugs to tumor sites. After precise delivery guided by fluorescence imaging, R848 is targeted to reprogram M2 macrophages into M1 macrophages, stimulate dendritic cell maturation as an adjuvant, and then activate T cell immunity. R848 polarization and CD47 blockade together enhanced the phagocytosis function of macrophages, which combined with T cell-mediated cellular immune response to finally effectively inhibit postsurgical tumor recurrence, metastasis, and prolonged survival time. It develops a targeted delivery and regulatory system for cell-specific responses to the pathophysiological features of wound healing for postoperative immunotherapy.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    用于药物递送的细胞膜涂层纳米平台由于其固有的细胞特性而受到了极大的关注。如免疫逃避和归巢能力,使它们成为广泛关注的主题。将来自不同细胞类型的混合膜涂覆到纳米颗粒表面上提供了一种利用自然细胞功能的方法,增强生物相容性和提高治疗效果。在这项研究中,我们将鼠源4T1乳腺癌细胞的膜与RAW264.7(RAW)膜合并,创建称为TRM的混合仿生涂层。随后,我们制造了负载吲哚菁绿(ICG)和咪喹莫特(R837)的混合TRM包覆的Fe3O4纳米颗粒,用于乳腺癌的联合治疗。RIFe@TRM纳米平台的综合表征揭示了两种细胞类型的固有特性。与裸Fe3O4纳米粒子相比,RIFe@TRM纳米颗粒在体外对4T1细胞表现出显著的细胞特异性自我识别,导致显著延长的循环寿命和增强的体内靶向能力。此外,仿生RIFe@TRM纳米平台通过Fenton反应和光热效应诱导肿瘤坏死,而R837促进肿瘤相关抗原的摄取增强,进一步激活CD8+细胞毒性T细胞以加强抗肿瘤免疫治疗。因此,RIFe@TRM纳米平台在化学动力学/免疫疗法/光热疗法中表现出出色的协同作用,显着抑制乳腺肿瘤的生长。总之,本研究为乳腺癌的有效治疗提供了一个有前景的仿生纳米平台。
    Cell membrane-coated nanoplatforms for drug delivery have garnered significant attention due to their inherent cellular properties, such as immune evasion and homing abilities, making them a subject of widespread interest. The coating of mixed membranes from different cell types onto the surface of nanoparticles offers a way to harness natural cell functions, enhancing biocompatibility and improving therapeutic efficacy. In this study, we merged membranes from murine-derived 4T1 breast cancer cells with RAW264.7 (RAW) membranes, creating a hybrid biomimetic coating referred to as TRM. Subsequently, we fabricated hybrid TRM-coated Fe3O4 nanoparticles loaded with indocyanine green (ICG) and imiquimod (R837) for combination therapy in breast cancer. Comprehensive characterization of the RIFe@TRM nanoplatform revealed the inherent properties of both cell types. Compared to bare Fe3O4 nanoparticles, RIFe@TRM nanoparticles exhibited remarkable cell-specific self-recognition for 4T1 cells in vitro, leading to significantly prolonged circulation life span and enhanced in vivo targeting capabilities. Furthermore, the biomimetic RIFe@TRM nanoplatform induced tumor necrosis through the Fenton reaction and photothermal effects, while R837 facilitated enhanced uptake of tumor-associated antigens, further activating CD8+ cytotoxic T cells to strengthen antitumor immunotherapy. Hence, RIFe@TRM nanoplatform demonstrated outstanding synergy in chemodynamic/immunotherapy/photothermal therapies, displaying significant inhibition of breast tumor growth. In summary, this study presents a promising biomimetic nanoplatform for effective treatment of breast cancer.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号