关键词: hybrid membrane mechanical strength methanol resistance polyoxovanadate proton conductivity

来  源:   DOI:10.1021/acsami.4c09126

Abstract:
In this work, a proton-conductive inorganic filler based on polyoxovanadate (NH4)7[MnV13O38] (AMV) and 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide (EMIM TFSI) was synthesized for hybridization with sulfonated poly(aryl ether ketone sulfone) (SPAEKS) to address the \"trade-off\" between high proton conductivity and mechanical strength. The novel inorganic filler AMV-EMIM TFSI (AI) was uniformly dispersed and stable within the polymer matrix due to the enhanced ionic interaction. AI provided additional proton transport sites, leading to an elevated ion exchange capacity (IEC) and improved proton conductivity, even at low swelling ratios. The optimized SPAEKS-50/AI-5 (50 for degree of sulfonation of SPAEKS and 5 for weight percentage of AI filler) membrane exhibited the highest proton conductivity of 0.188 S·cm-1 at 80 °C with an IEC of 2.38 mmol·g-1. The enhancement of intermolecular forces improved the mechanical strength from 35 to 55 MPa and improved the elongation at break from 17 to 45%, indicating excellent mechanical properties. The hybrid membrane also demonstrated reinforced methanol resistance due to the hydrogen bonding network and blocking effect, making it suitable for direct methanol fuel cell (DMFC) applications, which exhibited a power density of 15.1 mW·cm-2 at 80 °C. The possibility of further functionalizing these hybrid membranes to tailor their properties for specific applications presents exciting new avenues for research and development. By modification of the type and distribution of fillers or incorporation of additional functional groups, the membranes could be customized to meet the unique demands of various energy storage and conversion systems, enhancing their performance and broadening their application scope. This work provides new insights into the design of polymer electrolyte membranes through inorganic filler hybridization.
摘要:
在这项工作中,合成了一种基于聚氧钒酸(NH4)7[MnV13O38](AMV)和1-乙基-3-甲基咪唑鎓双(三氟甲基磺酰基)酰亚胺(EMIMTFSI)的质子导电无机填料,用于与磺化聚(芳基醚酮砜)(SPEKS)杂化,以解决高质子电导率和机械强度之间的“权衡”。由于增强的离子相互作用,新型无机填料AMV-EMIMTFSI(AI)在聚合物基质中均匀分散且稳定。AI提供了额外的质子传输位点,导致提高离子交换容量(IEC)和改善质子电导率,即使在低溶胀率。优化的SPAEKS-50/AI-5(对于SPAEKS的磺化程度为50,对于AI填料的重量百分比为5)膜在80°C时表现出最高的质子电导率为0.188S·cm-1,IEC为2.38mmol·g-1。分子间力的增强使机械强度从35提高到55MPa,断裂伸长率从17提高到45%,表明优异的机械性能。由于氢键网络和阻塞效应,杂化膜还表现出增强的耐甲醇性,使其适用于直接甲醇燃料电池(DMFC)应用,在80°C时表现出15.1mW·cm-2的功率密度。进一步功能化这些杂化膜以针对特定应用定制其性能的可能性为研究和开发提供了令人兴奋的新途径。通过改变填料的类型和分布或加入额外的官能团,可以定制膜以满足各种能量存储和转换系统的独特需求,提高其性能,拓宽其应用范围。这项工作为通过无机填料杂化设计聚合物电解质膜提供了新的见解。
公众号