Histidine Kinase

组氨酸激酶
  • 文章类型: Journal Article
    双组分系统GacS/A和转录后控制系统Rsm构成了γ变形菌的遗传调控途径;在假单胞菌的某些物种中,该途径是调节Rsm系统活性的多激酶网络(MKN)的一部分。在这个网络中,GacS的活性受其他激酶控制。研究最多的MKN之一是铜绿假单胞菌的MKN-GacS,其中GacS受激酶RetS和LadS控制;RetS降低GacS的激酶活性,而LadS刺激中枢激酶GacS的活性。在假单胞菌属之外,该网络仅在葡萄酒固氮菌中进行了研究。在这项工作中,我们报道了葡萄树RetS激酶的研究;正如预期的那样,在gacS突变体中受影响的表型,例如藻酸盐的生产,聚羟基丁酸酯,和烷基间苯二酚和游泳运动,在retS突变体中也受到影响。有趣的是,我们的数据表明,葡萄酒A中的RetS是GacA活性的正调节因子。与这一发现一致,retS中的突变也对属于Rsm家族的小调节RNA的表达产生负面影响。我们还证实了RetS与GacS的相互作用,以及磷酸转移蛋白HptB。
    The two-component system GacS/A and the posttranscriptional control system Rsm constitute a genetic regulation pathway in Gammaproteobacteria; in some species of Pseudomonas, this pathway is part of a multikinase network (MKN) that regulates the activity of the Rsm system. In this network, the activity of GacS is controlled by other kinases. One of the most studied MKNs is the MKN-GacS of Pseudomonas aeruginosa, where GacS is controlled by the kinases RetS and LadS; RetS decreases the kinase activity of GacS, whereas LadS stimulates the activity of the central kinase GacS. Outside of the Pseudomonas genus, the network has been studied only in Azotobacter vinelandii. In this work, we report the study of the RetS kinase of A. vinelandii; as expected, the phenotypes affected in gacS mutants, such as production of alginates, polyhydroxybutyrate, and alkylresorcinols and swimming motility, were also affected in retS mutants. Interestingly, our data indicated that RetS in A. vinelandii acts as a positive regulator of GacA activity. Consistent with this finding, mutation in retS also negatively affected the expression of small regulatory RNAs belonging to the Rsm family. We also confirmed the interaction of RetS with GacS, as well as with the phosphotransfer protein HptB.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    植物色素(Phys)是一组不同的bili蛋白,可通过暗适应的Pr和光活化的Pfr状态之间的可逆相互转换来检测光。虽然我们对下游事件的理解正在出现,目前尚不清楚Phys如何将光转化为可解释的构象信号。这里,我们介绍了来自丁香假单胞菌的具有组氨酸激酶(HK)活性的二聚体Phy的两种状态的模型,它们是根据光感模块(PSM)的高分辨率低温EM图(2.8-3.4-and)及其后续信号(S)螺旋以及下游输出区域的较低分辨率图构建的,并由RoseTTAFold和AlphaFold结构预测增强。头对头模型揭示了PSM及其光电转换机制,具有很强的清晰度,而香港地区是可解释的,但相对流动。Pr/Pfr比较表明,bilin的光转化改变了PSM的结构,最终导致将PSM连接到HK双峰的成对S-螺旋的剪切运动,该运动结束于成对的催化ATPase模块相对于磷酸受体组氨酸的重新定向。此作用显然会引发自磷酸化,然后磷酸转移到同源DNA结合反应调节剂AlgB,后者通过与光感受器的瞬时缔合来驱动群体感应行为。总的来说,这些模型说明了光吸收如何通过Phy型激酶在构象上转化为加速的信号传导。
    Phytochromes (Phys) are a divergent cohort of bili-proteins that detect light through reversible interconversion between dark-adapted Pr and photoactivated Pfr states. While our understandings of downstream events are emerging, it remains unclear how Phys translate light into an interpretable conformational signal. Here, we present models of both states for a dimeric Phy with histidine kinase (HK) activity from the proteobacterium Pseudomonas syringae, which were built from high-resolution cryo-EM maps (2.8-3.4-Å) of the photosensory module (PSM) and its following signaling (S) helix together with lower resolution maps for the downstream output region augmented by RoseTTAFold and AlphaFold structural predictions. The head-to-head models reveal the PSM and its photointerconversion mechanism with strong clarity, while the HK region is interpretable but relatively mobile. Pr/Pfr comparisons show that bilin phototransformation alters PSM architecture culminating in a scissoring motion of the paired S-helices linking the PSMs to the HK bidomains that ends in reorientation of the paired catalytic ATPase modules relative to the phosphoacceptor histidines. This action apparently primes autophosphorylation enroute to phosphotransfer to the cognate DNA-binding response regulator AlgB which drives quorum-sensing behavior through transient association with the photoreceptor. Collectively, these models illustrate how light absorption conformationally translates into accelerated signaling by Phy-type kinases.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    植物色素是在植物中发现的红光光感受器,在细菌和真菌中具有同源物,可调节多种生理反应。它们在两个不同的状态之间显示可逆的光循环:红光吸收Pr状态和远红光吸收Pfr状态。光转换调节酶域的活性,通常为组氨酸激酶(HK)。解释光如何控制HK活性的分子机制尚不清楚,因为缺少具有HK活性的未修饰细菌植物色素的结构。这里,我们报告了三种具有HK活性的野生型细菌植物色素的低温电子显微镜结构,这些结构被确定为Pr和Pfr同二聚体,以及具有不同状态的单个亚基的Pr/Pfr异二聚体。我们认为Pr/Pfr异源二聚体是生理相关的信号转导中间体。我们的结果提供了对控制HK酶活性的分子机制的深入了解,HK是细菌双组分系统的一部分,该系统可感知和转导光信号。
    Phytochromes are red-light photoreceptors discovered in plants with homologs in bacteria and fungi that regulate a variety of physiological responses. They display a reversible photocycle between two distinct states: a red-light-absorbing Pr state and a far-red light-absorbing Pfr state. The photoconversion regulates the activity of an enzymatic domain, usually a histidine kinase (HK). The molecular mechanism that explains how light controls the HK activity is not understood because structures of unmodified bacterial phytochromes with HK activity are missing. Here, we report three cryo-electron microscopy structures of a wild-type bacterial phytochrome with HK activity determined as Pr and Pfr homodimers and as a Pr/Pfr heterodimer with individual subunits in distinct states. We propose that the Pr/Pfr heterodimer is a physiologically relevant signal transduction intermediate. Our results offer insight into the molecular mechanism that controls the enzymatic activity of the HK as part of a bacterial two-component system that perceives and transduces light signals.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    细菌依靠双组分系统来感知环境线索并调节基因表达以适应。PhoQ/PhoP系统体现了这一关键作用,在感应镁(Mg2+)水平中起着关键作用,抗菌肽,温和的酸性pH,渗透升档,和长链不饱和脂肪酸,在某些细菌物种中促进毒力。然而,PhoQ激活的精确细节仍然难以捉摸。为了阐明PhoQ在原子分辨率下的信号机制,我们将AlphaFold2预测与分子建模相结合,并进行了广泛的分子动力学(MD)模拟。我们的MD模拟揭示了三种不同的PhoQ构象,并通过实验数据进行了验证。值得注意的是,一种构象的特征是Mg2+将传感器域中的酸性贴片桥接到膜上,可能代表一个被压抑的国家。此外,在假定的中间状态下观察到的高水合作用支持了PhoQ信号传导过程中水介导的构象变化的假设。我们的发现不仅揭示了PhoQ信号通路内的特定构象,但由于组氨酸激酶家族具有共同的结构特征,因此对于理解更广泛的组氨酸激酶家族也具有重要的希望。我们的方法为更全面地了解各种细菌物种的组氨酸激酶信号机制铺平了道路,并为开发靶向PhoQ调节的新疗法打开了大门。
    Bacteria rely on two-component systems to sense environmental cues and regulate gene expression for adaptation. The PhoQ/PhoP system exemplifies this crucial role, playing a key part in sensing magnesium (Mg2+) levels, antimicrobial peptides, mild acidic pH, osmotic upshift, and long-chain unsaturated fatty acids, promoting virulence in certain bacterial species. However, the precise details of PhoQ activation remain elusive. To elucidate PhoQ\'s signaling mechanism at atomic resolution, we combined AlphaFold2 predictions with molecular modeling and carried out extensive Molecular Dynamics (MD) simulations. Our MD simulations revealed three distinct PhoQ conformations that were validated by experimental data. Notably, one conformation was characterized by Mg2+ bridging the acidic patch in the sensor domain to the membrane, potentially representing a repressed state. Furthermore, the high hydration observed in a putative intermediate state lends support to the hypothesis of water-mediated conformational changes during PhoQ signaling. Our findings not only revealed specific conformations within the PhoQ signaling pathway, but also hold significant promise for understanding the broader histidine kinase family due to their shared structural features. Our approach paves the way for a more comprehensive understanding of histidine kinase signaling mechanisms across various bacterial species and opens the door for developing novel therapeutics that target PhoQ modulation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    两组分调节系统CenK-CenR最近已成为α-蛋白细菌中细胞包膜和细胞分裂过程的调节剂。在黑根瘤菌中,CenK-CenR调节SrlA的表达,一种功能未知的硫氧还蛋白结构域蛋白。srlA的缺失导致固体生长培养基上对盐和氧化剂的敏感性。在这项工作中,我们报告说,响应监管机构Cenr,但不是组氨酸激酶CenK,是S.meliloti细胞活力所必需的。我们还证明,目标残基D55的磷酸化不是生存力所必需的,表明未磷酸化的转录因子足以调节基因组中一个或多个必需基因的表达。使用转录测定和表型测试,我们检查了CenK-CenR依赖性srlA启动子的激活,并证明了其对磷酰基-CenR活性的绝对依赖性,并且CenR取代D55E充当磷模拟物,可在没有CenK磷酸化的情况下部分恢复srlA启动子的活性。最后,我们报告了转录激活所需的srlA启动子中CenR结合位点的突变分析。
    The two-component regulatory system CenK-CenR has recently emerged as a regulator of cell envelope and cell division processes in the alpha-proteobacteria. In Sinorhizobium meliloti, CenK-CenR regulates the expression of SrlA, a thioredoxin-domain protein of unknown function. Deletion of srlA causes sensitivity to salt and oxidizing agents on solid growth medium. In this work, we report that the response regulator CenR, but not the histidine kinase CenK, is essential for cell viability in S. meliloti. We also demonstrate that phosphorylation of the target residue D55 is not required for viability, suggesting that the unphosphorylated transcription factor sufficiently regulates expression of one or more essential genes in the genome. Using transcription assays and phenotype testing we examine CenK-CenR-dependent activation of the srlA promoter and demonstrate its absolute dependence on phosphoryl-CenR for activity and that the CenR substitution D55E acts as a phosphomimetic that partially restores activity at the srlA promoter in the absence of phosphorylation by CenK. Finally, we report a mutational analysis of the CenR binding site in the srlA promoter required for transcriptional activation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    磷酸组氨酸(pHis)是一种可逆的蛋白质翻译后修饰(PTM),目前尚不清楚。PHis中的P-N键对热和酸敏感,使研究比规范的磷酸氨基酸pSer更具挑战性,pThr,和pTyr。随着研究phis的工具开发的进步,PHis在细胞中的作用正在慢慢被揭示。迄今为止,已经确定了几种负责控制这种修饰的酶,包括组氨酸激酶NME1和NME2,以及磷酸组氨酸磷酸酶PHPT1,LHPP,pgam5这些工具还确定了这些酶的底物,为以前未知的监管机制提供新的见解。这里,我们讨论了pHis的细胞功能以及它是如何在已知的含pHis的蛋白质上调节的,以及调节pHis激酶和磷酸酶本身活性的细胞机制。我们进一步讨论了pHis激酶和磷酸酶作为潜在的肿瘤启动子或抑制剂的作用。最后,我们概述了目前用于研究phis生物学的各种工具和方法。鉴于它们的功能广度,揭示pHis在哺乳动物系统中的作用有望对现有和未开发的细胞生物学领域产生根本性的新见解。
    Phosphohistidine (pHis) is a reversible protein post-translational modification (PTM) that is currently poorly understood. The P-N bond in pHis is heat and acid-sensitive, making it more challenging to study than the canonical phosphoamino acids pSer, pThr, and pTyr. As advancements in the development of tools to study pHis have been made, the roles of pHis in cells are slowly being revealed. To date, a handful of enzymes responsible for controlling this modification have been identified, including the histidine kinases NME1 and NME2, as well as the phosphohistidine phosphatases PHPT1, LHPP, and PGAM5. These tools have also identified the substrates of these enzymes, granting new insights into previously unknown regulatory mechanisms. Here, we discuss the cellular function of pHis and how it is regulated on known pHis-containing proteins, as well as cellular mechanisms that regulate the activity of the pHis kinases and phosphatases themselves. We further discuss the role of the pHis kinases and phosphatases as potential tumor promoters or suppressors. Finally, we give an overview of various tools and methods currently used to study pHis biology. Given their breadth of functions, unraveling the role of pHis in mammalian systems promises radical new insights into existing and unexplored areas of cell biology.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    激酶的蛋白质磷酸化调节哺乳动物细胞功能,比如增长,司,和信号转导。在人类激酶中,NME1和NME2与转移性肿瘤抑制有关,但由于缺乏监测其细胞底物的工具,仍未得到充分研究。特别是,NME1和NME2是磷酸化丝氨酸的多特异性激酶,苏氨酸,组氨酸,和底物蛋白的天冬氨酸残基,磷酸组氨酸和磷酸天冬氨酸的热和酸敏感性使底物发现和验证变得复杂。为了提供新的底物监测工具,我们建立了γ-磷酸修饰的ATP类似物,ATP-生物素,作为NME1和NME2细胞底物的磷酸化生物素化的共底物。建立在这种ATP-生物素相容性的基础上,激酶催化的用失活裂解物发现底物的生物素化(K-BILDS)方法能够验证已知底物并发现7种NME1和3种NME2底物。鉴于缺乏研究激酶底物的方法,ATP-生物素和K-BILDS方法是表征NME1和NME2在人类细胞生物学中的作用的有价值的工具。
    Protein phosphorylation by kinases regulates mammalian cell functions, such as growth, division, and signal transduction. Among human kinases, NME1 and NME2 are associated with metastatic tumor suppression but remain understudied due to the lack of tools to monitor their cellular substrates. In particular, NME1 and NME2 are multispecificity kinases phosphorylating serine, threonine, histidine, and aspartic acid residues of substrate proteins, and the heat and acid sensitivity of phosphohistidine and phosphoaspartate complicates substrate discovery and validation. To provide new substrate monitoring tools, we established the γ-phosphate-modified ATP analog, ATP-biotin, as a cosubstrate for phosphorylbiotinylation of NME1 and NME2 cellular substrates. Building upon this ATP-biotin compatibility, the Kinase-catalyzed Biotinylation with Inactivated Lysates for Discovery of Substrates method enabled validation of a known substrate and the discovery of seven NME1 and three NME2 substrates. Given the paucity of methods to study kinase substrates, ATP-biotin and the Kinase-catalyzed Biotinylation with Inactivated Lysates for Discovery of Substrates method are valuable tools to characterize the roles of NME1 and NME2 in human cell biology.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    双组分系统(TCS)是细菌中普遍存在的信号通路。这些系统介导组氨酸激酶和反应调节剂之间的磷酸转移,促进对不同身体的反应,化学,和生物刺激。合成和结构生物学的进步使TCS重新用于监测重金属,疾病相关生物标志物,和生物产品的生产。然而,由于缺乏有效的工程方法,许多TCS生物传感器的实用性受到不良性能的阻碍。这里,我们简要讨论了TCS的架构和监管机制。我们还总结了TCS工程的最新进展,通过实验或基于计算的方法来微调生物传感器的功能参数,如反应曲线和特异性。工程TCS在医疗领域具有巨大的潜力,环境,和生物炼制领域,在广泛的生物技术领域发挥着关键作用。
    Two-component systems (TCSs) are prevalent signaling pathways in bacteria. These systems mediate phosphotransfer between histidine kinase and a response regulator, facilitating responses to diverse physical, chemical, and biological stimuli. Advancements in synthetic and structural biology have repurposed TCSs for applications in monitoring heavy metals, disease-associated biomarkers, and the production of bioproducts. However, the utility of many TCS biosensors is hindered by undesired performance due to the lack of effective engineering methods. Here, we briefly discuss the architectures and regulatory mechanisms of TCSs. We also summarize the recent advancements in TCS engineering by experimental or computational-based methods to fine-tune the biosensor functional parameters, such as response curve and specificity. Engineered TCSs have great potential in the medical, environmental, and biorefinery fields, demonstrating a crucial role in a wide area of biotechnology.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    双组分信号转导系统(TCSs)是在真细菌中广泛分布的调节系统,古细菌,和一些真核生物,但不是在哺乳动物细胞中。典型的TCS由组氨酸激酶和反应调节蛋白组成。对不同TCS的功能和机理研究极大地促进了对细胞磷酸转移信号转导机制的理解。在这篇概念论文中,我们专注于His-Asp磷酸转移机制,ATP合成功能,抗菌药物设计,细胞生物传感器设计,和蛋白质变构机制基于最近的TCS研究,以激发新的应用和未来的研究前景。
    Two-component signal transduction systems (TCSs) are regulatory systems widely distributed in eubacteria, archaea, and a few eukaryotic organisms, but not in mammalian cells. A typical TCS consists of a histidine kinase and a response regulator protein. Functional and mechanistic studies on different TCSs have greatly advanced the understanding of cellular phosphotransfer signal transduction mechanisms. In this concept paper, we focus on the His-Asp phosphotransfer mechanism, the ATP synthesis function, antimicrobial drug design, cellular biosensors design, and protein allostery mechanisms based on recent TCS investigations to inspire new applications and future research perspectives.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    在人类病原真菌中,来自杂合组氨酸激酶(hHK)的受体结构域必须识别一个HPt。要了解识别机制,我们已经从III组的五个hHKs的接收器域评估了磷中继,IV,V,VI,和XI从嗜热Chaetomium到HPt,分别获得了Ct_HPt的结构,并与hHKVI组的受体结构域复合。我们的数据表明,受体结构域磷酸转移到Ct_HPt,显示对复合物形成的低亲和力,并防止Leu-Thr转换以稳定磷酰基,也来自hHK组III和白色念珠菌Sln1的受体结构域的结构。此外,我们已经使用小角度X射线散射阐明了白色念珠菌Ypd1的包络结构,该结构揭示了不参与磷酸转移的长环αD-αE的扩展柔性构象。最后,我们分析了盐桥在Ct_HPt单独结构中的作用。
    In human pathogenic fungi, receiver domains from hybrid histidine kinases (hHK) have to recognize one HPt. To understand the recognition mechanism, we have assessed phosphorelay from receiver domains of five hHKs of group III, IV, V, VI, and XI to HPt from Chaetomium thermophilum and obtained the structures of Ct_HPt alone and in complex with the receiver domain of hHK group VI. Our data indicate that receiver domains phosphotransfer to Ct_HPt, show a low affinity for complex formation, and prevent a Leu-Thr switch to stabilize phosphoryl groups, also derived from the structures of the receiver domains of hHK group III and Candida albicans Sln1. Moreover, we have elucidated the envelope structure of C. albicans Ypd1 using small-angle X-ray scattering which reveals an extended flexible conformation of the long loop αD-αE which is not involved in phosphotransfer. Finally, we have analyzed the role of salt bridges in the structure of Ct_HPt alone.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号