Gene Expression Regulation, Bacterial

基因表达调控, 细菌
  • 文章类型: Journal Article
    The copper efflux regulator (CueR) is a classical member of the MerR family of metalloregulators and is common in gram-negative bacteria. Through its C-terminal effector-binding domain, CueR senses cytoplasmic copper ions to regulate the transcription of genes contributing to copper homeostasis, an essential process for survival of all cells. In this chapter, we review the regulatory roles of CueR in the model organism Escherichia coli and the mechanisms for CueR in copper binding, DNA recognition, and interplay with RNA polymerase in regulating transcription. In light of biochemical and structural analyses, we provide molecular details for how CueR represses transcription in the absence of copper ions, how copper ions mediate CueR conformational change to form holo CueR, and how CueR bends and twists promoter DNA to activate transcription. We also characterize the functional domains and key residues involved in these processes. Since CueR is a representative member of the MerR family, elucidating its regulatory mechanisms could help to understand the CueR-like regulators in other organisms and facilitate the understanding of other metalloregulators in the same family.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    The bacterial species Salmonella enterica (S. enterica) is a highly diverse pathogen containing more than 2600 distinct serovars, which can infect a wide range of animal and human hosts. Recent global emergence of multidrug resistant strains, from serovars Infantis and Muenchen is associated with acquisition of the epidemic megaplasmid, pESI that augments antimicrobial resistance and pathogenicity. One of the main pESI\'s virulence factors is the potent iron uptake system, yersiniabactin encoded by fyuA, irp2-irp1-ybtUTE, ybtA, and ybtPQXS gene cluster. Here we show that yersiniabactin, has an underappreciated distribution among different S. enterica serovars and subspecies, integrated in their chromosome or carried by different conjugative plasmids, including pESI. While the genetic organization and the coding sequence of the yersiniabactin genes are generally conserved, a 201-bp insertion sequence upstream to ybtA, was identified in pESI. Despite this insertion, pESI-encoded yersiniabactin is regulated by YbtA and the ancestral Ferric Uptake Regulator (Fur), which binds directly to the ybtA and irp2 promoters. Furthermore, we show that yersiniabactin genes are specifically induced during the mid-late logarithmic growth phase and in response to iron-starvation or hydrogen peroxide. Concurring, yersiniabactin was found to play a previously unknown role in oxidative stress tolerance and to enhance intestinal colonization of S. Infantis in mice. These results indicate that yersiniabactin contributes to Salmonella fitness and pathogenicity in vivo and is likely to play a role in the rapid dissemination of pESI among globally emerging Salmonella lineages.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    Cyanobacteria use a series of adaptation strategies and a complicated regulatory network to maintain intracellular iron (Fe) homeostasis. Here, a global activator named IutR has been identified through three-dimensional chromosome organization and transcriptome analysis in a model cyanobacterium Synechocystis sp. PCC 6803. Inactivation of all three homologous IutR-encoding genes resulted in an impaired tolerance of Synechocystis to Fe deficiency and loss of the responses of Fe uptake-related genes to Fe-deplete conditions. Protein-promoter interaction assays confirmed the direct binding of IutR with the promoters of genes related to Fe uptake, and chromatin immunoprecipitation sequencing analysis further revealed that in addition to Fe uptake, IutR could regulate many other physiological processes involved in intracellular Fe homeostasis. These results proved that IutR is an important transcriptional activator, which is essential for cyanobacteria to induce Fe-deficiency response genes. This study provides in-depth insights into the complicated Fe-deficient signaling network and the molecular mechanism of cyanobacteria adaptation to Fe-deficient environments.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    光是具有光系统的生物体的重要因素,就像细菌视紫红质——一种充当离子泵的视网膜蛋白,通道,和感官转导。紫罗兰弧菌PCC7421,具有质子泵吸视紫红质基因,视紫红质弧菌(GR)。转录调节因子的螺旋-转角-螺旋家族具有各种基序,它们在各种金属离子的存在下调节基因表达。这里,我们报道了活性质子外泵向视紫红质与螺旋-转角-螺旋转录调节因子相互作用并调节基因表达。使用ITC分析(8μM的KD)证实这种相互作用,并确定所需的带电残基。在使用荧光和荧光素酶报告系统的体外实验中,ATP结合盒(ABC)转运蛋白和紫罗兰G转录调节因子(GvTcR)的自我调节受光调节,并且使用实时聚合酶链反应在紫罗兰中观察到基因调控。这些结果扩展了我们对微生物视紫红质功能的自然潜力和局限性的理解。
    Light is a significant factor for living organisms with photosystems, like microbial rhodopsin-a retinal protein that functions as an ion pump, channel, and sensory transduction. Gloeobacter violaceus PCC7421, has a proton-pumping rhodopsin gene, the Gloeobacter rhodopsin (GR). The helix-turn-helix family of transcriptional regulators has various motifs, and they regulate gene expression in the presence of various metal ions. Here, we report that active proton outward pumping rhodopsin interacted with the helix-turn-helix transcription regulator and regulated gene expression. This interaction is confirmed using ITC analysis (KD of 8 μM) and determined the charged residues required. During in vitro experiments using fluorescent and luciferase reporter systems, ATP-binding cassette (ABC) transporters and the self-regulation of G. violaceus transcriptional regulator (GvTcR) are regulated by light, and gene regulation is observed in G. violaceus using the real-time polymerase chain reaction. These results expand our understanding of the natural potential and limitations of microbial rhodopsin function.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    SakazakiiCronobacter,机会食源性病原体,可能会污染各种食物材料,并导致婴儿出现危及生命的症状。细菌包膜结构有助于细菌环境耐受性,革兰氏阴性细菌中各种生物膜的形成和毒力。DsbA和PepP是与细菌包膜生物发生和稳固性有关的两个重要基因。在这项研究中,在Sakazakii中删除DsbA和PepP,以评估它们对病原体的胁迫耐受性和毒力的贡献。细菌环境抗性分析显示,DsbA和PepP在控制不同培养基中对热和干燥的影响是必不可少的。以及酸,渗透,氧化和胆汁盐应激。DsbA和PepP在调节生物膜形成和运动方面也起着重要作用。此外,DsbA和PepP缺失削弱了Caco-2中的Sakazakii粘附和侵袭、RAW264.7中的细胞内存活和复制。qRT-PCR结果表明,Sakazakii的DsbA和PepP在调节环境胁迫耐受性相关基因的表达中起作用,生物膜的形成,细菌运动和细胞入侵。这些发现表明,DsbA和PepP在环境抗性中起着重要的调节作用,Sakazakii的生物膜形成和毒力,这丰富了对病原体适应性和毒力的遗传决定因素的理解。
    Cronobacter sakazakii, an opportunity foodborne pathogen, could contaminate a broad range of food materials and cause life-threatening symptoms in infants. The bacterial envelope structure contribute to bacterial environment tolerance, biofilm formation and virulence in various in Gram-negative bacteria. DsbA and PepP are two important genes related to the biogenesis and stability of bacterial envelope. In this study, the DsbA and PepP were deleted in C. sakazakii to evaluate their contribution to stress tolerance and virulence of the pathogen. The bacterial environment resistance assays showed DsbA and PepP are essential in controlling C. sakazakii resistance to heat and desiccation in different mediums, as well as acid, osmotic, oxidation and bile salt stresses. DsbA and PepP also played an important role in regulating biofilm formation and motility. Furthermore, DsbA and PepP deletion weaken C. sakazakii adhesion and invasion in Caco-2, intracellular survival and replication in RAW 264.7. qRT-PCR results showed that DsbA and PepP of C. sakazakii played roles in regulating the expression of several genes associated with environment stress tolerance, biofilm formation, bacterial motility and cellular invasion. These findings indicate that DsbA and PepP played an important regulatory role in the environment resisitance, biofilm formation and virulence of C. sakazakii, which enrich understanding of genetic determinants of adaptability and virulence of the pathogen.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    携带新德里金属β-内酰胺酶编码基因的IncX3质粒,blaNDM-5在人类和动物中迅速传播。鉴于碳青霉烯被列入WHOAWaRe观察小组,禁止在动物中使用,携带blaNDM-5-IncX3质粒的耐碳青霉烯类肠杆菌(CRE)成功传播的驱动因素仍然未知.我们观察到携带blaNDM-5-IncX3的大肠杆菌可以在阿莫西林给药的情况下在鸡肠中持续存在,用于牲畜的最大的兽用β-内酰胺之一,或者没有任何抗生素压力。因此,我们表征了blaNDM-5-IncX3质粒并鉴定了转录调节因子,VirBR,与调节基因actX的启动子结合,增强IV型分泌系统(T4SS)的转录;从而,促进IncX3质粒的缀合,增加菌毛粘附能力并增强blaNDM-5-IncX3转结合体在动物消化道中的定植。我们的机制和体内研究确定VirBR是blaNDM-5-IncX3在单健康AMR部门成功传播的主要因素。此外,VirBR通过铜和锌离子的存在增强质粒接合和T4SS表达,从而对通用动物饲料的使用产生了深远的影响。
    IncX3 plasmids carrying the New Delhi metallo-β-lactamase-encoding gene, blaNDM-5, are rapidly spreading globally in both humans and animals. Given that carbapenems are listed on the WHO AWaRe watch group and are prohibited for use in animals, the drivers for the successful dissemination of Carbapenem-Resistant Enterobacterales (CRE) carrying blaNDM-5-IncX3 plasmids still remain unknown. We observe that E. coli carrying blaNDM-5-IncX3 can persist in chicken intestines either under the administration of amoxicillin, one of the largest veterinary β-lactams used in livestock, or without any antibiotic pressure. We therefore characterise the blaNDM-5-IncX3 plasmid and identify a transcription regulator, VirBR, that binds to the promoter of the regulator gene actX enhancing the transcription of Type IV secretion systems (T4SS); thereby, promoting conjugation of IncX3 plasmids, increasing pili adhesion capacity and enhancing the colonisation of blaNDM-5-IncX3 transconjugants in animal digestive tracts. Our mechanistic and in-vivo studies identify VirBR as a major factor in the successful spread of blaNDM-5-IncX3 across one-health AMR sectors. Furthermore, VirBR enhances the plasmid conjugation and T4SS expression by the presence of copper and zinc ions, thereby having profound ramifications on the use of universal animal feeds.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    支原体免疫球蛋白结合/蛋白酶(MIB-MIP)系统是一种候选的毒力因子,包括快速生长的阿氏支原体。MIB-MIP系统切割宿主免疫球蛋白的重链,因此影响抗原-抗体相互作用并可能促进免疫逃避。在这项工作中,使用-组学技术和5'RACE,我们表明,四个拷贝的费氏支原体MIB-MIP系统具有不同的表达水平,并被转录为由四个不同启动子控制的操纵子。在不含MIB-MIP基因的工程化费氏支原体菌株中引入了费氏支原体和其他Mollicutes的单个MIB-MIP基因对,并使用新开发的基于oriC的质粒测试了它们的功能。这两种蛋白质在费氏支原体的表面功能性表达,这证实了在这种细菌中展示大型膜相关蛋白的可能性。然而,无法实现从系统发育上遥远的猪毛囊,例如猪肺炎中支原体或猪肺炎中支原体,在该工程菌株中引入的异源MIB-MIP系统的功能表达。最后,由于费氏支原体是生物医学应用的候选药物,如药物递送,我们证实了它在家养山羊体内的安全性,它们是它的本土寄主阿尔卑斯山牛最亲密的牲畜亲戚。
    The Mycoplasma Immunoglobulin Binding/Protease (MIB-MIP) system is a candidate \'virulence factor present in multiple pathogenic species of the Mollicutes, including the fast-growing species Mycoplasma feriruminatoris. The MIB-MIP system cleaves the heavy chain of host immunoglobulins, hence affecting antigen-antibody interactions and potentially facilitating immune evasion. In this work, using -omics technologies and 5\'RACE, we show that the four copies of the M. feriruminatoris MIB-MIP system have different expression levels and are transcribed as operons controlled by four different promoters. Individual MIB-MIP gene pairs of M. feriruminatoris and other Mollicutes were introduced in an engineered M. feriruminatoris strain devoid of MIB-MIP genes and were tested for their functionality using newly developed oriC-based plasmids. The two proteins are functionally expressed at the surface of M. feriruminatoris, which confirms the possibility to display large membrane-associated proteins in this bacterium. However, functional expression of heterologous MIB-MIP systems introduced in this engineered strain from phylogenetically distant porcine Mollicutes like Mesomycoplasma hyorhinis or Mesomycoplasma hyopneumoniae could not be achieved. Finally, since M. feriruminatoris is a candidate for biomedical applications such as drug delivery, we confirmed its safety in vivo in domestic goats, which are the closest livestock relatives to its native host the Alpine ibex.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    牙龈卟啉单胞菌和根管卟啉单胞菌属于类杆菌门。这两种物种都栖息在口腔中,并且可能与牙周病有关。为了生存,它们必须从宿主中摄取血红素作为铁和原卟啉IX来源。在类杆菌门成员中鉴定出的特征最好的血红素采集系统是牙龈卟啉单胞菌Hmu系统,由血细胞样HmuY(HmuYPg)蛋白起主导作用。
    选择的HmuY蛋白的理论分析和分光光度法用于确定牙周假单胞菌HmuY同系物(HmuYPe)的血红素结合模式及其螯合血红素的能力。采用牙髓多糖的生长表型和基因表达分析来揭示HmuYPe和Hmu系统对该细菌的重要性。
    与牙龈卟啉单胞菌不同,HmuYPg使用两个组氨酸进行血红素-铁协调,其他已知的HmuY同系物在此过程中使用两种蛋氨酸。牙髓假单胞菌HmuYPe是使用组氨酸-甲硫氨酸对结合血红素的HmuY家族的第一个表征代表。它允许HmuYPe直接从血清白蛋白和连翘单纳菌HmuYTf中分离血红素,HmuY同系物,使用两个蛋氨酸进行血红素-铁配位。与HmuYPg相比,从高铁血红蛋白中直接螯合血红素,HmuYPe可能仅在血红蛋白的蛋白水解消化后结合血红素。
    我们假设Hmu系统的组成部分和HmuY蛋白的基于结构的特性的差异可能会进化,从而使卟啉单胞菌物种适应不断变化的宿主环境。这可能增加牙龈卟啉单胞菌优于类杆菌门的其他成员的毒力潜力。
    UNASSIGNED: Porphyromonas gingivalis and Porphyromonas endodontalis belong to the Bacteroidota phylum. Both species inhabit the oral cavity and can be associated with periodontal diseases. To survive, they must uptake heme from the host as an iron and protoporphyrin IX source. Among the best-characterized heme acquisition systems identified in members of the Bacteroidota phylum is the P. gingivalis Hmu system, with a leading role played by the hemophore-like HmuY (HmuYPg) protein.
    UNASSIGNED: Theoretical analysis of selected HmuY proteins and spectrophotometric methods were employed to determine the heme-binding mode of the P. endodontalis HmuY homolog (HmuYPe) and its ability to sequester heme. Growth phenotype and gene expression analysis of P. endodontalis were employed to reveal the importance of the HmuYPe and Hmu system for this bacterium.
    UNASSIGNED: Unlike in P. gingivalis, where HmuYPg uses two histidines for heme-iron coordination, other known HmuY homologs use two methionines in this process. P. endodontalis HmuYPe is the first characterized representative of the HmuY family that binds heme using a histidine-methionine pair. It allows HmuYPe to sequester heme directly from serum albumin and Tannerella forsythia HmuYTf, the HmuY homolog which uses two methionines for heme-iron coordination. In contrast to HmuYPg, which sequesters heme directly from methemoglobin, HmuYPe may bind heme only after the proteolytic digestion of hemoglobin.
    UNASSIGNED: We hypothesize that differences in components of the Hmu system and structure-based properties of HmuY proteins may evolved allowing different adaptations of Porphyromonas species to the changing host environment. This may add to the superior virulence potential of P. gingivalis over other members of the Bacteroidota phylum.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    在这项研究中,通过低聚果糖(FOS)和低聚半乳糖(GOS)培养的动物双歧杆菌的转录组测序和非靶向代谢组学技术,研究了双歧杆菌对寡糖的利用机制。结果表明,FOS通过增加msmE的表达水平影响三磷酸腺苷结合转运体(ABC转运体)的合成,msmG,还有gluA.同样,GOS通过上调tRNA-Ala的表达来改善氨酰-tRNA合成酶,tRNA-Pro,和tRNA-Met.用FOS和GOS培养的动物双歧杆菌产生不同的代谢产物,比如组胺,酒石酸,去甲肾上腺素,具有抑制炎症的功能,缓解抑郁症和与大脑和神经系统有关的疾病,保持身体健康。此外,转录组和代谢组分析结果表明,FOS和GOS通过调节碳水化合物的相关途径促进动物双歧杆菌的生长和代谢,能源,和氨基酸代谢。总的来说,实验结果为FOS和GOS的益生元效应提供了重要的见解。
    In this study, the utilization mechanism of oligosaccharides by Bifidobacterium was investigated through the transcriptome sequencing and non-targeted metabolomics technology of Bifidobacterium animalis cultured with fructo-oligosaccharides (FOS) and galacto-oligosaccharides (GOS). The results showed that FOS affected the synthesis of adenosine triphosphate binding transporters (ABC transporters) by increasing the expression levels of msmE, msmG, and gluA. Similarly, GOS improved aminoacyl-tRNA synthases by upregulating the expression of tRNA-Ala, tRNA-Pro, and tRNA-Met. Bifidobacterium animalis cultured with FOS and GOS produced different metabolites, such as histamine, tartaric acid, and norepinephrine, with the functions of inhibiting inflammation, alleviating depression and diseases related to brain and nervous system and maintaining body health. Furthermore, the transcriptome and metabolome analysis results revealed that FOS and GOS promoted the growth and metabolism of Bifidobacterium animalis by regulating the related pathways of carbohydrate, energy, and amino acid metabolism. Overall, the experimental results provided significant insights into the prebiotic effects of FOS and GOS.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    I型毒素-抗毒素系统(T1TA)是编码生长抑制毒素和抗毒素小RNA(sRNA)的双向细菌基因座。在许多这样的系统中,转录的毒素mRNA在翻译上是无活性的,但在核糖核酸分解加工后变得有翻译能力。抗毒素sRNA靶向加工的mRNA以抑制其翻译。这种两级控制机制可防止毒素的共转录翻译,并且仅在不存在抗毒素时才允许其合成。与此相反,我们发现timPRT1TA基因座的timPmRNA不经过酶促处理。相反,全长的timP转录物既具有翻译活性,又可以被抗毒素TimR靶向。因此,这个系统中的严格控制依赖于一种非规范机制。根据体外结合测定的结果,RNA结构探测,和无细胞翻译实验,我们建议timPmRNA采用互斥的结构构象。活性形式独特地具有RNA假结结构,其对于翻译起始是必需的。TimR优先结合活性构象,导致假结不稳定并抑制翻译。基于此,我们提出了一个模型,其中timPmRNA的“结构加工”能够在非允许条件下通过timR进行严格抑制,和TimP合成仅在TimR耗尽时。
    Type I toxin-antitoxin systems (T1TAs) are bipartite bacterial loci encoding a growth-inhibitory toxin and an antitoxin small RNA (sRNA). In many of these systems, the transcribed toxin mRNA is translationally inactive, but becomes translation-competent upon ribonucleolytic processing. The antitoxin sRNA targets the processed mRNA to inhibit its translation. This two-level control mechanism prevents cotranscriptional translation of the toxin and allows its synthesis only when the antitoxin is absent. Contrary to this, we found that the timP mRNA of the timPR T1TA locus does not undergo enzymatic processing. Instead, the full-length timP transcript is both translationally active and can be targeted by the antitoxin TimR. Thus, tight control in this system relies on a noncanonical mechanism. Based on the results from in vitro binding assays, RNA structure probing, and cell-free translation experiments, we suggest that timP mRNA adopts mutually exclusive structural conformations. The active form uniquely possesses an RNA pseudoknot structure which is essential for translation initiation. TimR preferentially binds to the active conformation, which leads to pseudoknot destabilization and inhibited translation. Based on this, we propose a model in which \"structural processing\" of timP mRNA enables tight inhibition by TimR in nonpermissive conditions, and TimP synthesis only upon TimR depletion.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号