Gating pore

  • 文章类型: Journal Article
    背景:SCN5A基因的变异体,它编码NaV1.5心脏钠通道,已与扩张型心肌病(DCM)相关的心律失常有关。然而,精确的病理机制仍然难以捉摸。本研究旨在阐明DCM连接的Nav1.5/R219H变体的病理生理后果,已知会产生门控孔电流,使用患者特异性人诱导多能干细胞衍生的心肌细胞(hiPSC-CM)在单层中培养。
    方法:脑室和心房样hiPSC-CM单层是从携带R219HSCN5A变体的DCM患者以及健康对照个体中产生的。CRISPR校正的hiPSC-CM用作等基因对照。动作电位(AP)和钙瞬变(CaT)的同时光学映射用于测量传导速度(CV)和AP持续时间(APD),并用作电兴奋性的标记。通过评估CaT摄取(达到峰值的一半时间)来评估钙处理,重新捕获(tau的衰变),和持续时间(TD50和TD80)。在hiPSC-CM单层上进行多电极阵列(MEA)分析,以测量场电位(FP)参数,包括校正的FridericiaFP持续时间(FPDc)。
    结果:我们的结果表明,与对照组相比,携带R219H变体的心室和心房样hiPSC-CM单层的CV显着降低了50%以上。与对照组和CRISPR校正组相比,R219H组的APD也延长了。CaT吸收,再摄取,在心室和心房样hiPSC-CM单层中,与对照组和CRISPR校正组相比,R219H组的持续时间也明显延迟。最后,MEA数据显示,与对照组和等基因对照组相比,携带R219H变异体的脑室和心房样hiPSC-CM的FPDc显著延长.
    结论:这些发现强调了门控孔电流对功能性合胞体环境中AP增殖和钙稳态的影响,并为DCM病理生理学潜在机制提供了有价值的见解。
    BACKGROUND: Variants of the SCN5A gene, which encodes the NaV1.5 cardiac sodium channel, have been linked to arrhythmic disorders associated with dilated cardiomyopathy (DCM). However, the precise pathological mechanisms remain elusive. The present study aimed to elucidate the pathophysiological consequences of the DCM-linked Nav1.5/R219H variant, which is known to generate a gating pore current, using patient-specific human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) cultured in monolayers.
    METHODS: Ventricular- and atrial-like hiPSC-CM monolayers were generated from DCM patients carrying the R219H SCN5A variant as well as from healthy control individuals. CRISPR-corrected hiPSC-CMs served as isogenic controls. Simultaneous optical mapping of action potentials (APs) and calcium transients (CaTs) was employed to measure conduction velocities (CVs) and AP durations (APDs) and served as markers of electrical excitability. Calcium handling was evaluated by assessing CaT uptake (half-time to peak), recapture (tau of decay), and durations (TD50 and TD80). A multi-electrode array (MEA) analysis was conducted on hiPSC-CM monolayers to measure field potential (FP) parameters, including corrected Fridericia FP durations (FPDc).
    RESULTS: Our results revealed that CVs were significantly reduced by more than 50 % in both ventricular- and atrial-like hiPSC-CM monolayers carrying the R219H variant compared to the control group. APDs were also prolonged in the R219H group compared to the control and CRISPR-corrected groups. CaT uptake, reuptake, and duration were also markedly delayed in the R219H group compared to the control and CRISPR-corrected groups in both the ventricular- and the atrial-like hiPSC-CM monolayers. Lastly, the MEA data revealed a notably prolonged FPDc in the ventricular- and atrial-like hiPSC-CMs carrying the R219H variant compared to the control and isogenic control groups.
    CONCLUSIONS: These findings highlight the impact of the gating pore current on AP propagation and calcium homeostasis within a functional syncytium environment and offer valuable insights into the potential mechanisms underlying DCM pathophysiology.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    大电导(MscL)的机械敏感通道充当“紧急释放阀”,保护细菌细胞免受急性低渗应激,它可以作为研究机械力传导机制的范例。提出了MSCL门控以不打开的扩展启动,随后通过许多中间子状打开孔隙,并以完整的开口结束。然而,门控过程的细节在很大程度上仍然未知。使用体内活力测定,单通道膜片钳记录,半胱氨酸交联,和色氨酸荧光猝灭方法,我们鉴定并表征了孔结构域中收缩区占比不同的MscL突变体。结果表明,在门控时,收缩点沿着门控途径向细胞质侧从残基G26(尽管G22)向L19转移,表明紧密堆积的疏水性收缩区域的膨胀的封闭-膨胀过渡耦合,以响应膜张力进行初始离子渗透。此外,这些转变是由疏水和脂类相互作用与收缩的“热点”调节。我们的数据揭示了从MscL的封闭到开放子状态的过渡的新分辨率,提供对MSCL门控机制的见解。
    The mechanosensitive channel of large conductance (MscL) acts as an \"emergency release valve\" that protects bacterial cells from acute hypoosmotic stress, and it serves as a paradigm for studying the mechanism underlying the transduction of mechanical forces. MscL gating is proposed to initiate with an expansion without opening, followed by subsequent pore opening via a number of intermediate substates, and ends in a full opening. However, the details of gating process are still largely unknown. Using in vivo viability assay, single channel patch clamp recording, cysteine cross-linking, and tryptophan fluorescence quenching approach, we identified and characterized MscL mutants with different occupancies of constriction region in the pore domain. The results demonstrated the shifts of constriction point along the gating pathway towards cytoplasic side from residue G26, though G22, to L19 upon gating, indicating the closed-expanded transitions coupling of the expansion of tightly packed hydrophobic constriction region to conduct the initial ion permeation in response to the membrane tension. Furthermore, these transitions were regulated by the hydrophobic and lipidic interaction with the constricting \"hot spots\". Our data reveal a new resolution of the transitions from the closed to the opening substate of MscL, providing insights into the gating mechanisms of MscL.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    Patients suffering from type 1 hypokalaemic periodic paralysis (HypoPP1) experience attacks of muscle paralysis associated with hypokalaemia. The disease arises from missense mutations in the gene encoding the α1 subunit of the dihydropyridine receptor (DHPR), a protein complex anchored in the tubular membrane of skeletal muscle fibres which controls the release of Ca2+ from sarcoplasmic reticulum and also functions as a Ca2+ channel. The vast majority of mutations consist of the replacement of one of the outer arginines in S4 segments of the α1 subunit by neutral residues. Early studies have shown that muscle fibres from HypoPP1 patients are abnormally depolarized at rest in low K+ to the point of inducing muscle inexcitability. The relationship between HypoPP1 mutations and depolarization has long remained unknown. More recent investigations conducted in the closely structurally related voltage-gated Na+ and K+ channels have shown that comparable S4 arginine substitutions gave rise to elevated inward currents at negative potentials called gating pore currents. Experiments performed in muscle fibres from different models revealed such an inward resting current through HypoPP1 mutated Ca2+ channels. In mouse fibres transfected with HypoPP1 mutated channels, the elevated resting current was found to carry H+ for the R1239H arginine-to-histidine mutation in a S4 segment and Na+ for the V876E HypoPP1 mutation, which has the peculiarity of not being located in S4 segments. Muscle paralysis probably results from the presence of a gating pore current associated with hypokalaemia for both mutations, possibly aggravated by external acidosis for the R1239H mutation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    Voltage-gated sodium channels belong to the superfamily of voltage-gated cation channels. Their structure is based on domains comprising a voltage sensor domain (S1-S4 segments) and a pore domain (S5-S6 segments). Mutations in positively charged residues of the S4 segments may allow protons or cations to pass directly through the gating pore constriction of the voltage sensor domain; these anomalous currents are referred to as gating pore or omega (ω) currents. In the skeletal muscle disorder hypokalemic periodic paralysis, and in arrhythmic dilated cardiomyopathy, inherited mutations of S4 arginine residues promote omega currents that have been shown to be a contributing factor in the pathogenesis of these sodium channel disorders. Characterization of gating pore currents in these channelopathies and with artificial mutations has been possible by measuring the voltage-dependence and selectivity of these leak currents. The basis of gating pore currents and the structural basis of S4 movement through the gating pore has also been studied extensively with molecular dynamics. These simulations have provided valuable insight into the nature of S4 translocation and the physical basis for the effects of mutations that promote permeation of protons or cations through the gating pore.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    The NaV1.4 sodium channel is highly expressed in skeletal muscle, where it carries almost all of the inward Na+ current that generates the action potential, but is not present at significant levels in other tissues. Consequently, mutations of SCN4A encoding NaV1.4 produce pure skeletal muscle phenotypes that now include six allelic disorders: sodium channel myotonia, paramyotonia congenita, hyperkalemic periodic paralysis, hypokalemic periodic paralysis, congenital myasthenia, and congenital myopathy with hypotonia. Mutation-specific alternations of NaV1.4 function explain the mechanistic basis for the diverse phenotypes and identify opportunities for strategic intervention to modify the burden of disease.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    Missense mutations in the gene encoding the α1 subunit of the skeletal muscle voltage-gated Ca2+ channel induce type 1 hypokalaemic periodic paralysis, a poorly understood neuromuscular disease characterized by episodic attacks of paralysis associated with low serum K+ . Acute expression of human wild-type and R1239H HypoPP1 mutant α1 subunits in mature mouse muscles showed that R1239H fibres displayed Ca2+ currents of reduced amplitude and larger resting leak inward current increased by external acidification. External acidification also produced intracellular acidification at a higher rate in R1239H fibres and inhibited inward rectifier K+ currents. These data suggest that the R1239H mutation induces an elevated leak H+ current at rest flowing through a gating pore and could explain why paralytic attacks preferentially occur during the recovery period following muscle exercise.
    Missense mutations in the gene encoding the α1 subunit of the skeletal muscle voltage-gated Ca2+ channel induce type 1 hypokalaemic periodic paralysis, a poorly understood neuromuscular disease characterized by episodic attacks of paralysis associated with low serum K+ . The present study aimed at identifying the changes in muscle fibre electrical properties induced by acute expression of the R1239H hypokalaemic periodic paralysis human mutant α1 subunit of Ca2+ channels in a mature muscle environment to better understand the pathophysiological mechanisms involved in this disorder. We transferred genes encoding wild-type and R1239H mutant human Ca2+ channels into hindlimb mouse muscle by electroporation and combined voltage-clamp and intracellular pH measurements on enzymatically dissociated single muscle fibres. As compared to fibres expressing wild-type α1 subunits, R1239H mutant-expressing fibres displayed Ca2+ currents of reduced amplitude and a higher resting leak inward current that was increased by external acidification. External acidification also produced intracellular acidification at a higher rate in R1239H fibres and inhibited inward rectifier K+ currents. These data indicate that the R1239H mutation induces an elevated leak H+ current at rest flowing through a gating pore created by the mutation and that external acidification favours onset of muscle paralysis by potentiating H+ depolarizing currents and inhibiting resting inward rectifier K+ currents. Our results could thus explain why paralytic attacks preferentially occur during the recovery period following intense muscle exercise.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    Nav 1.5 dysfunctions are commonly linked to rhythms disturbances that include type 3 long QT syndrome (LQT3), Brugada syndrome (BrS), sick sinus syndrome (SSS) and conduction defects. Recently, this channel protein has been also linked to structural heart diseases such as dilated cardiomyopathy (DCM).
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

公众号